全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Whole Genome Sequencing of Mycobacterium africanum Strains from Mali Provides Insights into the Mechanisms of Geographic Restriction

DOI: 10.1371/journal.pntd.0004332

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Mycobacterium africanum, made up of lineages 5 and 6 within the Mycobacterium tuberculosis complex (MTC), causes up to half of all tuberculosis cases in West Africa, but is rarely found outside of this region. The reasons for this geographical restriction remain unknown. Possible reasons include a geographically restricted animal reservoir, a unique preference for hosts of West African ethnicity, and an inability to compete with other lineages outside of West Africa. These latter two hypotheses could be caused by loss of fitness or altered interactions with the host immune system. Methodology/Principal Findings We sequenced 92 MTC clinical isolates from Mali, including two lineage 5 and 24 lineage 6 strains. Our genome sequencing assembly, alignment, phylogeny and average nucleotide identity analyses enabled us to identify features that typify lineages 5 and 6 and made clear that these lineages do not constitute a distinct species within the MTC. We found that in Mali, lineage 6 and lineage 4 strains have similar levels of diversity and evolve drug resistance through similar mechanisms. In the process, we identified a putative novel streptomycin resistance mutation. In addition, we found evidence of person-to-person transmission of lineage 6 isolates and showed that lineage 6 is not enriched for mutations in virulence-associated genes. Conclusions This is the largest collection of lineage 5 and 6 whole genome sequences to date, and our assembly and alignment data provide valuable insights into what distinguishes these lineages from other MTC lineages. Lineages 5 and 6 do not appear to be geographically restricted due to an inability to transmit between West African hosts or to an elevated number of mutations in virulence-associated genes. However, lineage-specific mutations, such as mutations in cell wall structure, secretion systems and cofactor biosynthesis, provide alternative mechanisms that may lead to host specificity.

References

[1]  de Jong BC, Antonio M, Gagneux S. Mycobacterium africanum—review of an important cause of human tuberculosis in West Africa. PLoS neglected tropical diseases. 2010;4(9):e744. doi: 10.1371/journal.pntd.0000744. pmid:20927191
[2]  Castets M, Boisvert H, Grumbach F, Brunel M, Rist N. [Tuberculosis bacilli of the African type: preliminary note]. Revue de tuberculose et de pneumologie. 1968;32(2):179–84. pmid:4985104
[3]  Mostowy S, Onipede A, Gagneux S, Niemann S, Kremer K, Desmond EP, et al. Genomic analysis distinguishes Mycobacterium africanum. Journal of clinical microbiology. 2004;42(8):3594–9. pmid:15297503 doi: 10.1128/jcm.42.8.3594-3599.2004
[4]  Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nature genetics. 2010;42(6):498–503. doi: 10.1038/ng.590. pmid:20495566
[5]  de Jong BC, Hill PC, Brookes RH, Gagneux S, Jeffries DJ, Otu JK, et al. Mycobacterium africanum elicits an attenuated T cell response to early secreted antigenic target, 6 kDa, in patients with tuberculosis and their household contacts. The Journal of infectious diseases. 2006;193(9):1279–86. pmid:16586366 doi: 10.1086/502977
[6]  Tientcheu LD, Sutherland JS, de Jong BC, Kampmann B, Jafali J, Adetifa IM, et al. Differences in T-cell responses between Mycobacterium tuberculosis and Mycobacterium africanum-infected patients. European journal of immunology. 2014;44(5):1387–98. doi: 10.1002/eji.201343956. pmid:24481948
[7]  Bold TD, Davis DC, Penberthy KK, Cox LM, Ernst JD, de Jong BC. Impaired fitness of Mycobacterium africanum despite secretion of ESAT-6. The Journal of infectious diseases. 2012;205(6):984–90. doi: 10.1093/infdis/jir883. pmid:22301632
[8]  Gehre F, Otu J, DeRiemer K, de Sessions PF, Hibberd ML, Mulders W, et al. Deciphering the growth behaviour of Mycobacterium africanum. PLoS neglected tropical diseases. 2013;7(5):e2220. doi: 10.1371/journal.pntd.0002220. pmid:23696911
[9]  de Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, et al. Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. The Journal of infectious diseases. 2008;198(7):1037–43. doi: 10.1086/591504. pmid:18702608
[10]  de Jong BC, Adetifa I, Walther B, Hill PC, Antonio M, Ota M, et al. Differences between tuberculosis cases infected with Mycobacterium africanum, West African type 2, relative to Euro-American Mycobacterium tuberculosis: an update. FEMS immunology and medical microbiology. 2010;58(1):102–5. doi: 10.1111/j.1574-695X.2009.00628.x. pmid:20002176
[11]  Castets M, Sarrat H. [Experimental study of the virulence of Mycobacterium africanum (preliminary note)]. Bulletin de la Societe medicale d'Afrique noire de langue francaise. 1969;14(4):693–6. pmid:5407132
[12]  Meyer CG, Scarisbrick G, Niemann S, Browne EN, Chinbuah MA, Gyapong J, et al. Pulmonary tuberculosis: virulence of Mycobacterium africanum and relevance in HIV co-infection. Tuberculosis. 2008;88(5):482–9. doi: 10.1016/j.tube.2008.05.004. pmid:18590979
[13]  Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nature genetics. 2013;45(10):1176–82. doi: 10.1038/ng.2744. pmid:23995134
[14]  Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, et al. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerging infectious diseases. 2013;19(3):460–3. doi: 10.3201/eid1903.120256. pmid:23622814
[15]  Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Seminars in immunology. 2014;26(6):431–44. doi: 10.1016/j.smim.2014.09.012. pmid:25453224
[16]  Smith NH, Kremer K, Inwald J, Dale J, Driscoll JR, Gordon SV, et al. Ecotypes of the Mycobacterium tuberculosis complex. Journal of theoretical biology. 2006;239(2):220–5. pmid:16242724 doi: 10.1016/j.jtbi.2005.08.036
[17]  Asante-Poku A, Yeboah-Manu D, Otchere ID, Aboagye SY, Stucki D, Hattendorf J, et al. Mycobacterium africanum Is Associated with Patient Ethnicity in Ghana. PLoS neglected tropical diseases. 2015;9(1):e3370. doi: 10.1371/journal.pntd.0003370. pmid:25569290
[18]  Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(6):3684–9. pmid:11891304 doi: 10.1073/pnas.052548299
[19]  Bentley SD, Comas I, Bryant JM, Walker D, Smith NH, Harris SR, et al. The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS neglected tropical diseases. 2012;6(2):e1552. doi: 10.1371/journal.pntd.0001552. pmid:22389744
[20]  Traore B, Diarra B, Dembele BP, Somboro AM, Hammond AS, Siddiqui S, et al. Molecular strain typing of Mycobacterium tuberculosis complex in Bamako, Mali. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease. 2012;16(7):911–6. doi: 10.5588/ijtld.11.0397
[21]  Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, et al. The complete genome sequence of Mycobacterium bovis. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(13):7877–82. pmid:12788972 doi: 10.1073/pnas.1130426100
[22]  Orduna P, Cevallos MA, de Leon SP, Arvizu A, Hernandez-Gonzalez IL, Mendoza-Hernandez G, et al. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection. BMC genomics. 2011;12:493. doi: 10.1186/1471-2164-12-493. pmid:21981907
[23]  Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, et al. Genome plasticity of BCG and impact on vaccine efficacy. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(13):5596–601. pmid:17372194 doi: 10.1073/pnas.0700869104
[24]  Seki M, Honda I, Fujita I, Yano I, Yamamoto S, Koyama A. Whole genome sequence analysis of Mycobacterium bovis bacillus Calmette-Guerin (BCG) Tokyo 172: a comparative study of BCG vaccine substrains. Vaccine. 2009;27(11):1710–6. doi: 10.1016/j.vaccine.2009.01.034. pmid:19200449
[25]  Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, et al. Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal. PLoS Med. 2015;12(9):e1001880. doi: 10.1371/journal.pmed.1001880. pmid:26418737
[26]  Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nature genetics. 2013;45(2):172–9. doi: 10.1038/ng.2517. pmid:23291586
[27]  Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nature genetics. 2013;45(10):1255–60. doi: 10.1038/ng.2735. pmid:23995137
[28]  Larsen MH, Biermann K, Tandberg S, Hsu T, Jacobs WR Jr. Genetic Manipulation of Mycobacterium tuberculosis. Curr Protoc Microbiol. 2007;Chapter 10:Unit 10A 2. doi: 10.1002/9780471729259.mc10a02s6
[29]  Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS one. 2014;9(11):e112963. doi: 10.1371/journal.pone.0112963. pmid:25409509
[30]  Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, et al. Finished bacterial genomes from shotgun sequence data. Genome research. 2012;22(11):2270–7. doi: 10.1101/gr.141515.112. pmid:22829535
[31]  Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM, et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome biology. 2011;12(1):R1. doi: 10.1186/gb-2011-12-1-r1. pmid:21205303
[32]  Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome biology. 2004;5(2):R12. pmid:14759262 doi: 10.1186/gb-2004-5-2-r12
[33]  Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics. 2010;11:119. Epub 2010/03/10. doi: 10.1186/1471-2105-11-119. pmid:20211023
[34]  Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic acids research. 1997;25(5):955–64. Epub 1997/03/01. pmid:9023104 doi: 10.1093/nar/25.5.955
[35]  Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic acids research. 2007;35(9):3100–8. Epub 2007/04/25. pmid:17452365 doi: 10.1093/nar/gkm160
[36]  Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, et al. The Pfam protein families database. Nucleic Acids Res. 2008;36(Database issue):D281–8. pmid:18039703 doi: 10.1093/nar/gkm960
[37]  Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29(1):41–3. Epub 2000/01/11. pmid:11125044 doi: 10.1093/nar/29.1.41
[38]  Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27(1):29–34. Epub 1998/12/10. pmid:9847135 doi: 10.1093/nar/27.1.29
[39]  Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278(5338):631–7. Epub 1997/10/24. pmid:9381173 doi: 10.1126/science.278.5338.631
[40]  Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6. pmid:16081474 doi: 10.1093/bioinformatics/bti610
[41]  Tian W, Arakaki AK, Skolnick J. EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference. Nucleic Acids Res. 2004;32(21):6226–39. Epub 2004/12/04. pmid:15576349 doi: 10.1093/nar/gkh956
[42]  Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6. Epub 2011/10/01. doi: 10.1038/nmeth.1701. pmid:21959131
[43]  Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80. Epub 2001/01/12. pmid:11152613 doi: 10.1006/jmbi.2000.4315
[44]  Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. Journal of clinical microbiology. 1997;35(4):907–14. pmid:9157152
[45]  Demay C, Liens B, Burguiere T, Hill V, Couvin D, Millet J, et al. SITVITWEB—a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol. 2012;12(4):755–66. doi: 10.1016/j.meegid.2012.02.004. pmid:22365971
[46]  Griggs A, Wapinski, I., Wortman, J., Haas, B. SYNERGY2: Accurate and scalable ortholog identification. in preparation. 2014.
[47]  Wapinski I, Pfeffer A, Friedman N, Regev A. Automatic genome-wide reconstruction of phylogenetic gene trees. Bioinformatics. 2007;23(13):i549–58. Epub 2007/07/25. pmid:17646342 doi: 10.1093/bioinformatics/btm193
[48]  Wapinski I, Pfeffer A, Friedman N, Regev A. Natural history and evolutionary principles of gene duplication in fungi. Nature. 2007;449(7158):54–61. Epub 2007/09/07. pmid:17805289 doi: 10.1038/nature06107
[49]  Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–90. Epub 2006/08/25. pmid:16928733 doi: 10.1093/bioinformatics/btl446
[50]  Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(7):2567–72. Epub 2005/02/11. pmid:15701695 doi: 10.1073/pnas.0409727102
[51]  Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, et al. Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio. 2012;3(1):e00318–11. Epub 2012/02/23. doi: 10.1128/mBio.00318-11. pmid:22354958
[52]  Wilgenbusch JC, Swofford D. Inferring evolutionary trees with PAUP*. Current protocols in bioinformatics / editoral board, Baxevanis Andreas D [et al]. 2003;Chapter 6:Unit 6 4. doi: 10.1002/0471250953.bi0604s00
[53]  Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi: 10.1093/bioinformatics/btp324. pmid:19451168
[54]  de Jong BC, Antonio M, Awine T, Ogungbemi K, de Jong YP, Gagneux S, et al. Use of spoligotyping and large sequence polymorphisms to study the population structure of the Mycobacterium tuberculosis complex in a cohort study of consecutive smear-positive tuberculosis cases in The Gambia. Journal of clinical microbiology. 2009;47(4):994–1001. doi: 10.1128/JCM.01216-08. pmid:19193842
[55]  Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PloS one. 2010;5(3):e9490. Epub 2010/03/13. doi: 10.1371/journal.pone.0009490. pmid:20224823
[56]  Storey JD. A direct approach to false discovery rates. J R Statist Soc B. 2002;64(Part 3):479–98. doi: 10.1111/1467-9868.00346
[57]  Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols. 2009;4(7):1073–81. doi: 10.1038/nprot.2009.86. pmid:19561590
[58]  Nielsen M, Lund O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC bioinformatics. 2009;10:296. doi: 10.1186/1471-2105-10-296. pmid:19765293
[59]  Hain Genotype MTBDRsl. Available from:
[60]  Hain Genotype MTBDRplus. Available from: .
[61]  Smith NH, Gordon SV, de la Rua-Domenech R, Clifton-Hadley RS, Hewinson RG. Bottlenecks and broomsticks: the molecular evolution of Mycobacterium bovis. Nature reviews Microbiology. 2006;4(9):670–81. pmid:16912712 doi: 10.1038/nrmicro1472
[62]  Koeck JL, Fabre M, Simon F, Daffe M, Garnotel E, Matan AB, et al. Clinical characteristics of the smooth tubercle bacilli 'Mycobacterium canettii' infection suggest the existence of an environmental reservoir. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2011;17(7):1013–9. doi: 10.1111/j.1469-0691.2010.03347.x
[63]  Galtier N, Depaulis F, Barton NH. Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics. 2000;155(2):981–7. pmid:10835415
[64]  Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. The Lancet Infectious diseases. 2013;13(2):137–46. doi: 10.1016/S1473-3099(12)70277-3. pmid:23158499
[65]  Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Molecular microbiology. 2003;48(1):77–84. pmid:12657046 doi: 10.1046/j.1365-2958.2003.03425.x
[66]  Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(22):12989–94. pmid:14569030 doi: 10.1073/pnas.2134250100
[67]  Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(23):8327–32. pmid:15928073 doi: 10.1073/pnas.0503272102
[68]  Homolka S, Post E, Oberhauser B, George AG, Westman L, Dafae F, et al. High genetic diversity among Mycobacterium tuberculosis complex strains from Sierra Leone. BMC Microbiol. 2008;8:103. doi: 10.1186/1471-2180-8-103. pmid:18578864
[69]  Hillemann D, Rusch-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. Journal of clinical microbiology. 2009;47(6):1767–72. doi: 10.1128/JCM.00081-09. pmid:19386845
[70]  Ignatyeva O, Kontsevaya I, Kovalyov A, Balabanova Y, Nikolayevskyy V, Toit K, et al. Detection of resistance to second-line antituberculosis drugs by use of the genotype MTBDRsl assay: a multicenter evaluation and feasibility study. Journal of clinical microbiology. 2012;50(5):1593–7. doi: 10.1128/JCM.00039-12. pmid:22378910
[71]  Kiet VS, Lan NT, An DD, Dung NH, Hoa DV, van Vinh Chau N, et al. Evaluation of the MTBDRsl test for detection of second-line-drug resistance in Mycobacterium tuberculosis. Journal of clinical microbiology. 2010;48(8):2934–9. doi: 10.1128/JCM.00201-10. pmid:20573868
[72]  Kontsevaya I, Ignatyeva O, Nikolayevskyy V, Balabanova Y, Kovalyov A, Kritsky A, et al. Diagnostic accuracy of the genotype MTBDRsl assay for rapid diagnosis of extensively drug-resistant tuberculosis in HIV-coinfected patients. Journal of clinical microbiology. 2013;51(1):243–8. doi: 10.1128/JCM.02513-12. pmid:23152552
[73]  Lacoma A, Garcia-Sierra N, Prat C, Maldonado J, Ruiz-Manzano J, Haba L, et al. GenoType MTBDRsl for molecular detection of second-line-drug and ethambutol resistance in Mycobacterium tuberculosis strains and clinical samples. Journal of clinical microbiology. 2012;50(1):30–6. doi: 10.1128/JCM.05274-11. pmid:22075597
[74]  Orikiriza P, Tibenderana B, Siedner MJ, Mueller Y, Byarugaba F, Moore CC, et al. Low Resistance to First and Second Line Anti-Tuberculosis Drugs among Treatment Naive Pulmonary Tuberculosis Patients in Southwestern Uganda. PloS one. 2015;10(2):e0118191. doi: 10.1371/journal.pone.0118191. pmid:25658921
[75]  Singhal R, Myneedu VP, Arora J, Singh N, Bhalla M, Verma A, et al. Early detection of multi-drug resistance and common mutations in Mycobacterium tuberculosis isolates from Delhi using GenoType MTBDRplus assay. Indian journal of medical microbiology. 2015;33 Suppl:S46–52. doi: 10.4103/0255-0857.150879
[76]  Finken M, Kirschner P, Meier A, Wrede A, Bottger EC. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Molecular microbiology. 1993;9(6):1239–46. pmid:7934937 doi: 10.1111/j.1365-2958.1993.tb01253.x
[77]  Wong SY, Lee JS, Kwak HK, Via LE, Boshoff HI, Barry CE 3rd. Mutations in gidB confer low-level streptomycin resistance in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 2011;55(6):2515–22. doi: 10.1128/AAC.01814-10. pmid:21444711
[78]  Farooqi JQ, Khan E, Alam SM, Ali A, Hasan Z, Hasan R. Line probe assay for detection of rifampicin and isoniazid resistant tuberculosis in Pakistan. JPMA The Journal of the Pakistan Medical Association. 2012;62(8):767–72. pmid:23862246
[79]  WHO. Global Tuberculosis Report 2014. Available from: .
[80]  WHO. Tuberculosis country profiles: Mali. Available from: .
[81]  McGuire AM, Weiner B, Park ST, Wapinski I, Raman S, Dolganov G, et al. Comparative analysis of Mycobacterium and related Actinomycetes yields insight into the evolution of Mycobacterium tuberculosis pathogenesis. BMC genomics. 2012;13:120. doi: 10.1186/1471-2164-13-120. pmid:22452820
[82]  Gopinath K, Moosa A, Mizrahi V, Warner DF. Vitamin B(12) metabolism in Mycobacterium tuberculosis. Future microbiology. 2013;8(11):1405–18. doi: 10.2217/fmb.13.113. pmid:24199800
[83]  Lavollay M, Arthur M, Fourgeaud M, Dubost L, Marie A, Veziris N, et al. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. Journal of bacteriology. 2008;190(12):4360–6. doi: 10.1128/JB.00239-08. pmid:18408028
[84]  Schoonmaker MK, Bishai WR, Lamichhane G. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to beta-lactams. Journal of bacteriology. 2014;196(7):1394–402. doi: 10.1128/JB.01396-13. pmid:24464457
[85]  Agarwal N, Lamichhane G, Gupta R, Nolan S, Bishai WR. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature. 2009;460(7251):98–102. doi: 10.1038/nature08123. pmid:19516256
[86]  Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. Biochimica et biophysica acta. 2014;1837(7):1208–18. doi: 10.1016/j.bbabio.2014.01.022. pmid:24513197
[87]  Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223–7. pmid:15591164 doi: 10.1126/science.1106753
[88]  Gioffre A, Infante E, Aguilar D, Santangelo MP, Klepp L, Amadio A, et al. Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes and infection / Institut Pasteur. 2005;7(3):325–34. doi: 10.1016/j.micinf.2004.11.007
[89]  Thorel MF. Isolation of Mycobacterium africanum from monkeys. Tubercle. 1980;61(2):101–4. pmid:6776671 doi: 10.1016/0041-3879(80)90018-5
[90]  Thorel MF. [Mycobacteria identified in a centre for veterinary research between 1973 and 1979 (author's transl)]. Annales de microbiologie. 1980;131(1):61–9. pmid:6767431
[91]  Coscolla M, Lewin A, Metzger S, Maetz-Rennsing K, Calvignac-Spencer S, Nitsche A, et al. Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerging infectious diseases. 2013;19(6):969–76. doi: 10.3201/eid1906.121012. pmid:23735084
[92]  Rahim Z, Mollers M, te Koppele-Vije A, de Beer J, Zaman K, Matin MA, et al. Characterization of Mycobacterium africanum subtype I among cows in a dairy farm in Bangladesh using spoligotyping. The Southeast Asian journal of tropical medicine and public health. 2007;38(4):706–13. pmid:17883011
[93]  Alfredsen S, Saxegaard F. An outbreak of tuberculosis in pigs and cattle caused by Mycobacterium africanum. The Veterinary record. 1992;131(3):51–3. pmid:1441162 doi: 10.1136/vr.131.3.51
[94]  Gudan A, Artukovic B, Cvetnic Z, Spicic S, Beck A, Hohsteter M, et al. Disseminated tuberculosis in hyrax (Procavia capensis) caused by Mycobacterium africanum. Journal of zoo and wildlife medicine: official publication of the American Association of Zoo Veterinarians. 2008;39(3):386–91. doi: 10.1638/06-041.1
[95]  Michel AL, Muller B, van Helden PD. Mycobacterium bovis at the animal-human interface: a problem, or not? Veterinary microbiology. 2010;140(3–4):371–81. doi: 10.1016/j.vetmic.2009.08.029. pmid:19773134
[96]  Mandal S, Bradshaw L, Anderson LF, Brown T, Evans JT, Drobniewski F, et al. Investigating transmission of Mycobacterium bovis in the United Kingdom in 2005 to 2008. Journal of clinical microbiology. 2011;49(5):1943–50. doi: 10.1128/JCM.02299-10. pmid:21430093
[97]  Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C, Moreau F, et al. Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(31):11491–6. doi: 10.1073/pnas.1406693111. pmid:25049399
[98]  Simeone R, Bottai D, Brosch R. ESX/type VII secretion systems and their role in host-pathogen interaction. Current opinion in microbiology. 2009;12(1):4–10. doi: 10.1016/j.mib.2008.11.003. pmid:19155186
[99]  Houben EN, Korotkov KV, Bitter W. Take five—Type VII secretion systems of Mycobacteria. Biochimica et biophysica acta. 2014;1843(8):1707–16. doi: 10.1016/j.bbamcr.2013.11.003. pmid:24263244
[100]  Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Molecular microbiology. 2002;46(3):709–17. pmid:12410828 doi: 10.1046/j.1365-2958.2002.03237.x
[101]  Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nature medicine. 2003;9(5):533–9. pmid:12692540 doi: 10.1038/nm859
[102]  Oussalah A, Besseau C, Chery C, Jeannesson E, Gueant-Rodriguez RM, Anello G, et al. Helicobacter pylori serologic status has no influence on the association between fucosyltransferase 2 polymorphism (FUT2 461 G->A) and vitamin B-12 in Europe and West Africa. The American journal of clinical nutrition. 2012;95(2):514–21. doi: 10.3945/ajcn.111.016410. pmid:22237057
[103]  Gueant-Rodriguez RM, Gueant JL, Debard R, Thirion S, Hong LX, Bronowicki JP, et al. Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations. The American journal of clinical nutrition. 2006;83(3):701–7. pmid:16522920
[104]  Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. The Journal of biological chemistry. 2003;278(42):41148–59. pmid:12869542 doi: 10.1074/jbc.m305837200
[105]  Gopinath K, Venclovas C, Ioerger TR, Sacchettini JC, McKinney JD, Mizrahi V, et al. A vitamin B(1)(2) transporter in Mycobacterium tuberculosis. Open biology. 2013;3(2):120175. doi: 10.1098/rsob.120175. pmid:23407640
[106]  Gehre F, Antonio M, Otu JK, Sallah N, Secka O, Faal T, et al. Immunogenic Mycobacterium africanum strains associated with ongoing transmission in The Gambia. Emerging infectious diseases. 2013;19(10):1598–604. doi: 10.3201/eid1910.121023. pmid:24050158
[107]  Niemann S, Rusch-Gerdes S, Joloba ML, Whalen CC, Guwatudde D, Ellner JJ, et al. Mycobacterium africanum subtype II is associated with two distinct genotypes and is a major cause of human tuberculosis in Kampala, Uganda. Journal of clinical microbiology. 2002;40(9):3398–405. pmid:12202584 doi: 10.1128/jcm.40.9.3398-3405.2002
[108]  Ahmad S, Akbar PK, Wiker HG, Harboe M, Mustafa AS. Cloning, expression and immunological reactivity of two mammalian cell entry proteins encoded by the mce1 operon of Mycobacterium tuberculosis. Scandinavian journal of immunology. 1999;50(5):510–8. pmid:10564554 doi: 10.1046/j.1365-3083.1999.00631.x
[109]  Bai G, Knapp GS, McDonough KA. Cyclic AMP signalling in mycobacteria: redirecting the conversation with a common currency. Cellular microbiology. 2011;13(3):349–58. doi: 10.1111/j.1462-5822.2010.01562.x. pmid:21199259
[110]  Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537–44. pmid:9634230 doi: 10.1038/31159
[111]  Banu S, Honore N, Saint-Joanis B, Philpott D, Prevost MC, Cole ST. Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Molecular microbiology. 2002;44(1):9–19. pmid:11967065 doi: 10.1046/j.1365-2958.2002.02813.x
[112]  Godreuil S, Torrea G, Terru D, Chevenet F, Diagbouga S, Supply P, et al. First molecular epidemiology study of Mycobacterium tuberculosis in Burkina Faso. Journal of clinical microbiology. 2007;45(3):921–7. pmid:17251410 doi: 10.1128/jcm.01918-06
[113]  Ani A, Bruvik T, Okoh Y, Agaba P, Agbaji O, Idoko J, et al. Genetic diversity of Mycobacterium tuberculosis Complex in Jos, Nigeria. BMC Infect Dis. 2010;10:189. doi: 10.1186/1471-2334-10-189. pmid:20579382
[114]  Cadmus S, Hill V, van Soolingen D, Rastogi N. Spoligotype profile of Mycobacterium tuberculosis complex strains from HIV-positive and -negative patients in Nigeria: a comparative analysis. Journal of clinical microbiology. 2011;49(1):220–6. doi: 10.1128/JCM.01241-10. pmid:21048016
[115]  Asiimwe BB, Ghebremichael S, Kallenius G, Koivula T, Joloba ML. Mycobacterium tuberculosis spoligotypes and drug susceptibility pattern of isolates from tuberculosis patients in peri-urban Kampala, Uganda. BMC Infect Dis. 2008;8:101. doi: 10.1186/1471-2334-8-101. pmid:18662405

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133