The molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM) exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes). The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1) transcription factor network components (including FOSB, FOS and JUNB), early growth response proteins 1 and 3 (EGR1, EGR3), and cytokines/chemokines (IL5, IL6, IL13, CCL11), which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA) array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF-β dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic cardiomyopathy. Examining the very early molecular events of T. cruzi cellular infection may provide disease biomarkers which will aid clinicians in patient assessment and identification of patient subpopulation at risk of developing Chagasic cardiomyopathy.
References
[1]
Bern C, Kjos S, Yabsley MJ, Montgomery SP (2011) Trypanosoma cruzi and Chagas' Disease in the United States. Clin Microbiol Rev 24: 655–681. doi: 10.1128/CMR.00005-11. pmid:21976603
[2]
Montgomery SP, Starr MC, Cantey PT, Edwards MS, Meymandi SK (2014) Neglected parasitic infections in the United States: Chagas disease. Am J Trop Med Hyg 90: 814–818. doi: 10.4269/ajtmh.13-0726. pmid:24808250
[3]
Coura JR, Borges-Pereira J (2010) Chagas disease: 100 years after its discovery. A systemic review. Acta Trop 115: 5–13. doi: 10.1016/j.actatropica.2010.03.008. pmid:20382097
[4]
Coura JR, Vinas PA (2010) Chagas disease: a new worldwide challenge. Nature 465: S6–7. doi: 10.1038/nature09221. pmid:20571554
Rassi A Jr., Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375: 1388–1402. doi: 10.1016/S0140-6736(10)60061-X. pmid:20399979
[7]
Perez-Molina JA, Norman F, Lopez-Velez R (2012) Chagas disease in non-endemic countries: epidemiology, clinical presentation and treatment. Curr Infect Dis Rep 14: 263–274. doi: 10.1007/s11908-012-0259-3. pmid:22477037
[8]
Cantey PT, Stramer SL, Townsend RL, Kamel H, Ofafa K, et al. (2012) The United States Trypanosoma cruzi Infection Study: evidence for vector-borne transmission of the parasite that causes Chagas disease among United States blood donors. Transfusion 52: 1922–1930. doi: 10.1111/j.1537-2995.2012.03581.x. pmid:22404755
[9]
Kjos SA, Snowden KF, Olson JK (2009) Biogeography and Trypanosoma cruzi infection prevalence of Chagas disease vectors in Texas, USA. Vector Borne Zoonotic Dis 9: 41–50. doi: 10.1089/vbz.2008.0026. pmid:18800865
[10]
Higuchi Mde L, Benvenuti LA, Martins Reis M, Metzger M (2003) Pathophysiology of the heart in Chagas' disease: current status and new developments. Cardiovasc Res 60: 96–107. pmid:14522411
[11]
Tanowitz HB, Machado FS, Jelicks LA, Shirani J, de Carvalho AC, et al. (2009) Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis 51: 524–539. doi: 10.1016/j.pcad.2009.02.001. pmid:19410685
[12]
Goldenberg RC, Iacobas DA, Iacobas S, Rocha LL, da Silva de Azevedo Fortes F, et al. (2009) Transcriptomic alterations in Trypanosoma cruzi-infected cardiac myocytes. Microbes Infect 11: 1140–1149. doi: 10.1016/j.micinf.2009.08.009. pmid:19729072
[13]
Manque PA (2011) Trypanosoma cruzi infection induces a global host cell response in cardiomyocytes. Infection and Immunity 79. doi: 10.1128/iai.05449-11
[14]
Garg N, Popov VL, Papaconstantinou J (2003) Profiling gene transcription reveals a deficiency of mitochondrial oxidative phosphorylation in Trypanosoma cruzi-infected murine hearts: implications in chagasic myocarditis development. Biochim Biophys Acta 1638: 106–120. pmid:12853116 doi: 10.1016/s0925-4439(03)00060-7
[15]
Garzoni LR, Adesse D, Soares MJ, Rossi MI, Borojevic R, et al. (2008) Fibrosis and hypertrophy induced by Trypanosoma cruzi in a three-dimensional cardiomyocyte-culture system. J Infect Dis 197: 906–915. doi: 10.1086/528373. pmid:18279074
[16]
Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D, Benvenutti L, et al. (2005) Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas' disease cardiomyopathy. Am J Pathol 167: 305–313. pmid:16049318 doi: 10.1016/s0002-9440(10)62976-8
[17]
Samudio M, Montenegro-James S, Kasamatsu E, Cabral M, Schinini A, et al. (1999) Local and systemic cytokine expression during experimental chronic Trypanosoma cruzi infection in a Cebus monkey model. Parasite Immunol 21: 451–460. pmid:10476054 doi: 10.1046/j.1365-3024.1999.00242.x
[18]
Hall BS, Pereira MA (2000) Dual role for transforming growth factor beta-dependent signaling in Trypanosoma cruzi infection of mammalian cells. Infect Immun 68: 2077–2081. pmid:10722604 doi: 10.1128/iai.68.4.2077-2081.2000
[19]
Waghabi MC, Keramidas M, Feige JJ, Araujo-Jorge TC, Bailly S (2005) Activation of transforming growth factor beta by Trypanosoma cruzi. Cell Microbiol 7: 511–517. pmid:15760451 doi: 10.1111/j.1462-5822.2004.00481.x
[20]
Waghabi MC, Keramidas M, Calvet CM, Meuser M, de Nazare CSM, et al. (2007) SB-431542, a transforming growth factor beta inhibitor, impairs Trypanosoma cruzi infection in cardiomyocytes and parasite cycle completion. Antimicrob Agents Chemother 51: 2905–2910. pmid:17526757 doi: 10.1128/aac.00022-07
[21]
Sanchez-Capelo A (2005) Dual role for TGF-beta1 in apoptosis. Cytokine Growth Factor Rev 16: 15–34. pmid:15733830 doi: 10.1016/j.cytogfr.2004.11.002
[22]
Weber KT (1997) Monitoring tissue repair and fibrosis from a distance. Circulation 96: 2488–2492. pmid:9355880
[23]
Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, et al. (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13: 952–961. pmid:17660828 doi: 10.1038/nm1613
[24]
Lin J, Patel SR, Cheng X, Cho EA, Levitan I, et al. (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11: 387–393. pmid:15793581 doi: 10.1038/nm1217
[25]
Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700. pmid:12809600 doi: 10.1016/s0092-8674(03)00432-x
[26]
Neilson EG (2005) Setting a trap for tissue fibrosis. Nat Med 11: 373–374. pmid:15812511 doi: 10.1038/nm0405-373
Christy B, Nathans D (1989) DNA binding site of the growth factor-inducible protein Zif268. Proc Natl Acad Sci U S A 86: 8737–8741. pmid:2510170 doi: 10.1073/pnas.86.22.8737
[29]
Bhattacharyya S, Fang F, Tourtellotte W, Varga J (2013) Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol 229: 286–297. doi: 10.1002/path.4131. pmid:23132749
[30]
Fang F, Shangguan AJ, Kelly K, Wei J, Gruner K, et al. (2013) Early growth response 3 (Egr-3) is induced by transforming growth factor-beta and regulates fibrogenic responses. Am J Pathol 183: 1197–1208. doi: 10.1016/j.ajpath.2013.06.016. pmid:23906810
[31]
Bhattacharyya S, Wu M, Fang F, Tourtellotte W, Feghali-Bostwick C, et al. (2011) Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol 30: 235–242. doi: 10.1016/j.matbio.2011.03.005. pmid:21511034
[32]
Huang H, Petkova SB, Cohen AW, Bouzahzah B, Chan J, et al. (2003) Activation of transcription factors AP-1 and NF-kappa B in murine Chagasic myocarditis. Infect Immun 71: 2859–2867. pmid:12704159 doi: 10.1128/iai.71.5.2859-2867.2003
[33]
Lima MF, Villalta F (1989) Trypanosoma cruzi trypomastigote clones differentially express a parasite cell adhesion molecule. Mol Biochem Parasitol 33: 159–170. pmid:2657421 doi: 10.1016/0166-6851(89)90030-3
[34]
Villalta F, Lima MF, Zhou L (1990) Purification of Trypanosoma cruzi surface proteins involved in adhesion to host cells. Biochem Biophys Res Commun 172: 925–931. pmid:2241980 doi: 10.1016/0006-291x(90)90764-e
[35]
Gharaibeh RZ, Fodor AA, Gibas CJ (2008) Background correction using dinucleotide affinities improves the performance of GCRMA. BMC Bioinformatics 9: 452. doi: 10.1186/1471-2105-9-452. pmid:18947404
[36]
Kirov S, Ji R, Wang J, Zhang B (2014) Functional annotation of differentially regulated gene set using WebGestalt: a gene set predictive of response to ipilimumab in tumor biopsies. Methods Mol Biol 1101: 31–42. doi: 10.1007/978-1-62703-721-1_3. pmid:24233776
[37]
Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res 41: W77–83. doi: 10.1093/nar/gkt439. pmid:23703215
[38]
Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33: W741–748. pmid:15980575 doi: 10.1093/nar/gki475
[39]
Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, et al. (2010) GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26: 2927–2928. doi: 10.1093/bioinformatics/btq562. pmid:20926419
[40]
Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, et al. (2013) GeneMANIA prediction server 2013 update. Nucleic Acids Res 41: W115–122. doi: 10.1093/nar/gkt533. pmid:23794635
[41]
Gao J, Ade AS, Tarcea VG, Weymouth TE, Mirel BR, et al. (2009) Integrating and annotating the interactome using the MiMI plugin for cytoscape. Bioinformatics 25: 137–138. doi: 10.1093/bioinformatics/btn501. pmid:18812364
[42]
Jayapandian M, Chapman A, Tarcea VG, Yu C, Elkiss A, et al. (2007) Michigan Molecular Interactions (MiMI): putting the jigsaw puzzle together. Nucleic Acids Res 35: D566–571. pmid:17130145 doi: 10.1093/nar/gkl859
[43]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504. pmid:14597658 doi: 10.1101/gr.1239303
[44]
Johnson CA, Kleshchenko YY, Ikejiani AO, Udoko AN, Cardenas TC, et al. (2012) Thrombospondin-1 interacts with Trypanosoma cruzi surface calreticulin to enhance cellular infection. PLoS One 7: e40614. doi: 10.1371/journal.pone.0040614. pmid:22808206
[45]
Aoki-Kinoshita KF, Kanehisa M (2007) Gene annotation and pathway mapping in KEGG. Methods Mol Biol 396: 71–91. pmid:18025687 doi: 10.1007/978-1-59745-515-2_6
[46]
Kanehisa M (2002) The KEGG database. Novartis Found Symp 247: 91–101; discussion 101–103, 119–128, 244–152. pmid:12539951 doi: 10.1002/0470857897.ch8
[47]
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, et al. (1999) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27: 29–34. pmid:9847135 doi: 10.1093/nar/27.1.29
[48]
Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5: e13984. doi: 10.1371/journal.pone.0013984. pmid:21085593
[49]
Mascareno E, Dhar M, Siddiqui MA (1998) Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci U S A 95: 5590–5594. pmid:9576927 doi: 10.1073/pnas.95.10.5590
[50]
Cardenas TC, Johnson CA, Pratap S, Nde PN, Furtak V, et al. (2010) REGULATION of the EXTRACELLULAR MATRIX INTERACTOME by Trypanosoma cruzi. Open Parasitol J 4: 72–76. pmid:21499436 doi: 10.2174/1874421401004010072
[51]
Nde PN, Lima MF, Johnson CA, Pratap S, Villalta F (2012) Regulation and use of the extracellular matrix by Trypanosoma cruzi during early infection. Front Immunol 3: 337. doi: 10.3389/fimmu.2012.00337. pmid:23133440
[52]
Nde PN, Johnson CA, Pratap S, Cardenas TC, Kleshchenko YY, et al. (2010) Gene network analysis during early infection of human coronary artery smooth muscle cells by Trypanosoma cruzi and Its gp83 ligand. Chem Biodivers 7: 1051–1064. doi: 10.1002/cbdv.200900320. pmid:20491065
[53]
Rassi A Jr., Rassi A, Marcondes de Rezende J (2012) American trypanosomiasis (Chagas disease). Infect Dis Clin North Am 26: 275–291. doi: 10.1016/j.idc.2012.03.002. pmid:22632639
[54]
Yajima T, Knowlton KU (2009) Viral myocarditis: from the perspective of the virus. Circulation 119: 2615–2624. doi: 10.1161/CIRCULATIONAHA.108.766022. pmid:19451363
[55]
Kusko RL, Banerjee C, Long KK, Darcy A, Otis J, et al. (2012) Premature expression of a muscle fibrosis axis in chronic HIV infection. Skelet Muscle 2: 10. doi: 10.1186/2044-5040-2-10. pmid:22676806
[56]
Calvet CM, Melo TG, Garzoni LR, Oliveira FO Jr., Neto DT, et al. (2012) Current understanding of the Trypanosoma cruzi-cardiomyocyte interaction. Front Immunol 3: 327. doi: 10.3389/fimmu.2012.00327. pmid:23115558
[57]
Yang YC, Piek E, Zavadil J, Liang D, Xie D, et al. (2003) Hierarchical model of gene regulation by transforming growth factor beta. Proc Natl Acad Sci U S A 100: 10269–10274. pmid:12930890 doi: 10.1073/pnas.1834070100
[58]
Lan HY (2011) Diverse roles of TGF-beta/Smads in renal fibrosis and inflammation. Int J Biol Sci 7: 1056–1067. pmid:21927575 doi: 10.7150/ijbs.7.1056
[59]
Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52: 11–34. pmid:10699153
[60]
Zhou Y, Poczatek MH, Berecek KH, Murphy-Ullrich JE (2006) Thrombospondin 1 mediates angiotensin II induction of TGF-beta activation by cardiac and renal cells under both high and low glucose conditions. Biochem Biophys Res Commun 339: 633–641. pmid:16310163 doi: 10.1016/j.bbrc.2005.11.060
[61]
Grotegut S, von Schweinitz D, Christofori G, Lehembre F (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25: 3534–3545. pmid:16858414 doi: 10.1038/sj.emboj.7601213
[62]
Gotsman I, Shauer A, Zwas DR, Hellman Y, Keren A, et al. (2012) Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. Eur J Heart Fail 14: 357–366. doi: 10.1093/eurjhf/hfr175. pmid:22308011
[63]
Garcia-Silva MR, Cabrera-Cabrera F, das Neves RF, Souto-Padron T, de Souza W, et al. (2014) Gene expression changes induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: relevance of tRNA-derived halves. Biomed Res Int 2014: 305239. doi: 10.1155/2014/305239. pmid:24812611
[64]
Saadane N, Alpert L, Chalifour LE (1999) TAFII250, Egr-1, and D-type cyclin expression in mice and neonatal rat cardiomyocytes treated with doxorubicin. Am J Physiol 276: H803–814. pmid:10070062
[65]
Saadane N, Alpert L, Chalifour LE (1999) Expression of immediate early genes, GATA-4, and Nkx-2.5 in adrenergic-induced cardiac hypertrophy and during regression in adult mice. Br J Pharmacol 127: 1165–1176. pmid:10455263 doi: 10.1038/sj.bjp.0702676
[66]
Saadane N, Alpert L, Chalifour LE (2000) Altered molecular response to adrenoreceptor-induced cardiac hypertrophy in Egr-1-deficient mice. Am J Physiol Heart Circ Physiol 278: H796–805. pmid:10710348
[67]
Zweifel M, Matozan K, Dahinden C, Schaffner T, Mohacsi P (2010) Eotaxin/CCL11 levels correlate with myocardial fibrosis and mast cell density in native and transplanted rat hearts. Transplant Proc 42: 2763–2766. doi: 10.1016/j.transproceed.2010.05.152. pmid:20832583
[68]
Kaviratne M, Hesse M, Leusink M, Cheever AW, Davies SJ, et al. (2004) IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. J Immunol 173: 4020–4029. pmid:15356151 doi: 10.4049/jimmunol.173.6.4020
[69]
Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA (1999) An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 104: 777–785. pmid:10491413 doi: 10.1172/jci7325
[70]
Melendez GC, McLarty JL, Levick SP, Du Y, Janicki JS, et al. (2010) Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56: 225–231. doi: 10.1161/HYPERTENSIONAHA.109.148635. pmid:20606113
[71]
Kanellakis P, Ditiatkovski M, Kostolias G, Bobik A (2012) A pro-fibrotic role for interleukin-4 in cardiac pressure overload. Cardiovasc Res 95: 77–85. doi: 10.1093/cvr/cvs142. pmid:22492684
[72]
Thum T, Lorenzen JM (2012) Cardiac fibrosis revisited by microRNA therapeutics. Circulation 126: 800–802. doi: 10.1161/CIRCULATIONAHA.112.125013. pmid:22811579