Background Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. Methodology/Principle Findings We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Conclusions/Significance Triatoma protracta populations in California are frequently infected with T. cruzi. Our data extend the northern limits of the range of TcI and identify a novel genetic exchange event between TcI and TcIV. High similarity between sequences from California and specific Latin American strains indicates US strains may be equally capable of causing human disease. Additional genetic characterization of Californian and other US T. cruzi strains is recommended.
References
[1]
Bern C, Montgomery SP, Kjos S, Yabsley MJ. Trypanosoma cruzi and Chagas' disease in the United States. Clin Microbiol Rev. 2011;24(4):655–81. doi: 10.1128/CMR.00005-11. pmid:21976603
[2]
Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault SK, Periago MR. The neglected tropical diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis. 2008;2(9):e300. doi: 10.1371/journal.pntd.0000300. pmid:18820747
[3]
Wood SF, Wood FD. New locations for Chagas' trypanosome in California. Bull South Calif Acad Sci. 1964;63(2):104–11.
[4]
Walton B, Bauman P, Diamond L, Herman C. The isolation and identification of Trypanosoma cruzi from raccoons in Maryland. Am J Trop Med Hyg. 1958;7(6):603–10. pmid:13595203
[5]
Reisenman CE, Lawrence G, Guerenstein PG, Gregory T, Dotson E, Hildebrand JG. Infection of kissing bugs with Trypanosoma cruzi, Tucson, Arizona, USA. Emerg Infect Dis. 2010;16(3):400–5. doi: 10.3201/eid1603.090648. pmid:20202413
[6]
Kjos SA, Snowden KF, Olson JK. Biogeography and Trypanosoma cruzi infection prevalence of Chagas disease vectors in Texas, USA. Vector Borne Zoonotic Dis. 2009;9(1):41–9. doi: 10.1089/vbz.2008.0026. pmid:18800865
[7]
Cesa K, Cailloueut KA, Dorn PL, Wesson DM. High Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) prevalence in Triatoma sanguisuga (Hemiptera: Redviidae) in Southeastern Louisiana. J Med Entomol. 2011;48(5):1091–4. pmid:21936329 doi: 10.1603/me10195
[8]
Yabsley MJ, Noblet GP. Seroprevalence of Trypanosoma cruzi in raccoons from South Carolina and Georgia. J Wildl Dis. 2002;38(1):75–83. pmid:11838232 doi: 10.7589/0090-3558-38.1.75
[9]
Charles RA, Kjos S, Ellis AE, Barnes JC, Yabsley MJ. Southern plains woodrats (Neotoma micropus) from Southern Texas are important reservoirs of two genotypes of Trypanosoma cruzi and host of a putative novel Trypanosoma species. Vector Borne Zoonotic Dis. 2012;13(1):22–30. doi: 10.1089/vbz.2011.0817. pmid:23127189
[10]
Bradley KK, Bergman DK, Woods JP, Crutcher JM, Kirchhoff LV. Prevalence of American trypanosomiasis (Chagas disease) among dogs in Oklahoma. J Am Vet Med Assoc. 2000;217(12):1853–7. pmid:11132891 doi: 10.2460/javma.2000.217.1853
[11]
Montenegro VM, Jimenez M, Dias JCP, Zeledon R. Chagas disease in dogs from endemic areas of Costa Rica. Mem Inst Oswaldo Cruz. 2002;97(4):491–4. doi: 10.1590/S0074-02762002000400006. pmid:12118277
[12]
Kjos SA, Olson JK, Snowden KF, Craig TM, Lewis B, Ronald N. Distribution and characterization of canine Chagas disease in Texas. Vet Parasitol. 2008;152(3–4):249–56. doi: 10.1016/j.vetpar.2007.12.021. pmid:18255233
[13]
Rowland ME, Maloney J, Cohen S, Yabsley MJ, Huang J, Kranz M, et al. Factors associated with Trypanosoma cruzi exposure among domestic canines in Tennessee. J Parasitol. 2010;96(3):547–51. doi: 10.1645/GE-2299.1. pmid:20557201
[14]
Nieto PD, Boughton R, Dorn PL, Steurer F, Raychaudhuri S, Esfandiari J, et al. Comparison of two immunochromatographic assays and the indirect immunofluorescence antibody test for diagnosis of Trypanosoma cruzi infection in dogs in south central Louisiana. Vet Parasitol. 2009;165:241–7. doi: 10.1016/j.vetpar.2009.07.010. pmid:19647943
[15]
Tenney TD, Curtis-Robles R, Snowden KF, Hamer SA. Shelter dogs as sentinels for Trypanosoma cruzi transmission across Texas, USA. Emerg Infect Dis. 2014;20(8):1323–6. doi: 10.3201/eid2008.131843. pmid:25062281
[16]
Cantey PT, Stramer SL, Townsend RL, Kamel H, Ofafa K, Todd CW, et al. The United States Trypanosoma cruzi infection study: Evidence for vector-borne transmission of the parasite that causes Chagas disease among United States blood donors. Transfusion. 2012;52(9):1922–30. doi: 10.1111/j.1537-2995.2012.03581.x. pmid:22404755
[17]
Klotz SA, Schmidt JO, Dorn PL, Ivanyi C, Sullivan KR, Stevens L. Free-roaming kissing bugs, vectors of Chagas disease, feed often on humans in the Southwest. Am J Med. 2014;127(5):421–6. doi: 10.1016/j.amjmed.2013.12.017. pmid:24398362
[18]
Bern C, Montgomery SP, Katz L, Caglioti S, Stramer SL. Chagas disease and the US blood supply. Curr Opin Infect Dis. 2008;21(5):476–82. doi: 10.1097/QCO.0b013e32830ef5b6. pmid:18725796
[19]
Hotez PJ, Dumonteil E, Betancourt Cravioto M, Bottazzi ME, Tapia-Conyer R, Meymandi S, et al. An unfolding tragedy of Chagas disease in North America. PLoS Negl Trop Dis. 2013;7(10):e2300. doi: 10.1371/journal.pntd.0002300. pmid:24205411
[20]
Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104(7):1051–4. pmid:20027478 doi: 10.1590/s0074-02762009000700021
[21]
Roellig DM, Savage MY, Fujita WA, Barnabe C, Tibayrenc M, Steurer F, et al. Genetic variation and exchange in Trypanosoma cruzi isolates from the United States. PLoS One. 2013;8(2):e56198. doi: 10.1371/journal.pone.0056198. pmid:23457528
[22]
Bonney KM. Chagas disease in the 21st century: A public health success or an emerging threat? Parasite. 2014;21(11). doi: 10.1051/parasite/2014012.
[23]
Lambert RC, Kolivras KN, Resler LM, Brewster CC, Paulson SL. The potential for emergence of Chagas disease in the United States. Geospat Health. 2008;2(2):227–39. pmid:18686271 doi: 10.4081/gh.2008.246
[24]
Roellig DM, Brown EL, Barnabe C, Tibayrenc M, Steurer F, Yabsley MJ. Molecular typing of Trypanosoma cruzi isolates, United States. Emerg Infect Dis. 2008;14: 1123–1125(7). doi: 10.3201/eid1407.080175. pmid:18598637
[25]
Hwang WS, Zhang G, Maslov D, Weirauch C. Short report: Infection rates of Triatoma protracta (Uhler) with Trypanosoma cruzi in Southern California and molecular identification of trypanosomes. Am J Trop Med Hyg. 2010;83(5):1020–2. pmid:21036830 doi: 10.4269/ajtmh.2010.10-0167
[26]
American Immigration Council. New Americans in California: The economic power of immigrants, Latinos, and Asians in the golden state 2014 [cited 2014 9 Sept]. Available from: .
[27]
Johnson H, Mejia M. Immigrants in California 2013 [cited 2014 9 Sept]. Available from: .
[28]
Stoney S, Batalova J, Russell J. South American Immigrants in the United States Migration Policy Institute 2013 [cited 2014 9 Sept]. Available from: .
[29]
Theis JH. Exotic stock of Trypanosoma cruzi (SCHIZOTRYPANUM) capable of development in and transmission by Triatoma protracta protracta from California: Public health implications. Am J Trop Med Hyg. 1987;36(3):523–8. pmid:3107409
[30]
Sjogren RD, Ryckman RE. Epizootiology of Trypanosoma cruzi in southwestern North America. Part VIII: Nocturnal flights of Triatoma protracta (Uhler) as indicated by collections at black light traps (Hemiptera: Reduviidae: Triatominae). J Med Entomol. 1966;3(1):81–92. pmid:5941571 doi: 10.1093/jmedent/3.1.81
[31]
Moser DR, Kirchhoff LV, Donelson JE. Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol. 1989;27(7):1477–82. pmid:2504769
[32]
Wincker P, Britto C, Pereira JB, Cardoso MA, Oelemann W, Morel CM. Use of a simplified polymerase chain reaction procedure to detect Trypanosoma cruzi in blood samples from chronic chagasic patients in a rural endemic area. Am J Trop Med Hyg. 1994;51(6):771–7. pmid:7810810 doi: 10.1016/0169-4758(95)80148-0
[33]
Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol. 1996;83(2):141–52. pmid:9027747 doi: 10.1016/s0166-6851(96)02755-7
[34]
Westenberger SJ, Barnabe C, Campbell DA, Sturm NR. Two hybridization events define the population structure of Trypanosoma cruzi. Genetics. 2005;171(2):527–43. doi: 10.1534/genetics.104.038745. pmid:15998728
[35]
Machado CA, Ayala FJ. Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci U S A. 2001;98(13):7396–401. doi: 10.1073/pnas.121187198. pmid:11416213
[36]
Yeo M, Mauricio IL, Messenger LA, Lewis MD, Llewellyn MS, Acosta N, et al. Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi. PLoS Negl Trop Dis. 2011;5(6):e1049. doi: 10.1371/journal.pntd.0001049. pmid:21713026
[37]
Lewis MD, Ma J, Yeo M, Carrasco HJ, Llewellyn MS, Miles MA. Genotyping of Trypanosoma cruzi: Systematic selection of assays allowing rapid and accurate discrimination of all known lineages. Am J Trop Med Hyg. 2009;81(6):1041–9. doi: 10.4269/ajtmh.2009.09-0305. pmid:19996435
[38]
Diosque P, Tomasini N, Lauthier JJ, Messenger LA, Monje Rumi MM, Ragone PG, et al. Optimized Multilocus Sequence Typing (MLST) Scheme for Trypanosoma cruzi. PLoS Negl Trop Dis. 2014;8(8). doi: 10.1371/journal.pntd.0003117
[39]
Iwagami M, Higo H, Miura S, Yanagi T, Tada I, Kano S, et al. Molecular phylogeny of Trypanosoma cruzi from Central America (Guatemala) and a comparison with South American strains. Parasitol Res. 2007;102(1):129–34. pmid:17828552 doi: 10.1007/s00436-007-0739-9
[40]
Tomazi L, Kawashita SY, Pereira PM, Zingales B, Briones MR. Haplotype distribution of five nuclear genes based on network genealogies and Bayesian inference indicates that Trypanosoma cruzi hybrid strains are polyphyletic. Genet Mol Res. 2009;8(2):458–76. pmid:19551633 doi: 10.4238/vol8-2gmr591
[41]
Chen CI, King DP, Blanchard MT, Hall MR, Aldridge BM, Bowen L, et al. Identification of the etiologic agent of epizootic bovine abortion in field-collected Ornithodoros coriaceus Koch ticks. Vet Microbiol. 2007;120:320–7. doi: 10.1016/j.vetmic.2006.10.036. pmid:17156944
[42]
Messenger LA, Llewellyn MS, Bhattacharyya T, Franzen O, Lewis MD, David Ramirez J, et al. Multiple mitochondrial introgression events and heteroplasmy in Trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing. PLoS Negl Trop Dis. 2012;6(4):e1584. doi: 10.1371/journal.pntd.0001584. pmid:22506081
[43]
Woodman ME. Direct PCR of intact bacteria (colony PCR). Current protocols in microbiology. 2008;Appendix 3:A.3D.1–A.3D.6. doi: 10.1002/9780471729259.mca03ds9
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. doi: 10.1093/bioinformatics/bts199. pmid:22543367
[46]
Zumaya-Estrada FA, Messenger LA, Lopez-Ordonez T, Lewis MD, Flores-Lopez CA, Martinez-Ibarra A, et al. North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasit Vectors. 2012;5: 226. doi: 10.1186/1756-3305-5-226. pmid:23050833
[47]
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101(30):11030–5. doi: 10.1073/pnas.0404206101. pmid:15258291
[48]
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–2. doi: 10.1093/bioinformatics/btp187. pmid:19346325
[49]
Westenberger SJ, Cerqueira GC, El-Sayed NM, Zingales B, Campbell DA, Sturm NR. Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region. BMC Genomics. 2006;7:60. doi: 10.1186/1471-2164-7-60. pmid:16553959
[50]
Lewis MD, Llewellyn MS, Yeo M, Acosta N, Gaunt MW, Miles MA. Recent, independent and anthropogenic origins of Trypanosoma cruzi hybrids. PLoS Negl Trop Dis. 2011;5(10):e1363. doi: 10.1371/journal.pntd.0001363. pmid:22022633
[51]
Ramírez JD, Guhl F, Messenger LA, Lewi sMD, Montilla M, Cucunuba Z, et al. Contemporary cryptic sexuality in Trypanosoma cruzi. Mol Ecol. 2012;21(17):4216–26. doi: 10.1111/j.1365-294X.2012.05699.x. pmid:22774844
[52]
Llewellyn MS, Rivett-Carnac JB, Fitzpatrick S, Lewis MDY, Matthew , Gaunt MW, Miles MA. Extraordinary Trypanosoma cruzi diversity within single mammalian reservoir hosts implies a mechanism of diversifying selection. Int J Parasitol. 2011;41:609–14. doi: 10.1016/j.ijpara.2010.12.004. pmid:21232539
[53]
Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, Vargas J, et al. Genome-Scale Multilocus Microsatellite Typing of Trypanosoma cruzi Discrete Typing Unit I Reveals Phylogeographic Structure and Specific Genotypes Linked to Human Infection. PLoS Pathogens. 2009;5(5):e1000410. doi: 10.1371/journal.ppat.1000410. pmid:19412340
[54]
Klotz SA, Dorn PL, Klotz JH, Pinnas JL, Weirauch C, Kurtz JR, et al. Feeding behavior of triatomines from the southwestern United States: An update on potential risk for transmission of Chagas disease. Acta Trop. 2009;111(2):114–8. doi: 10.1016/j.actatropica.2009.03.003. pmid:19524078
[55]
Navin TR, Roberto RR, Juranek DD, Limpakarnjanarat K, Mortenson EW, Clover JR, et al. Human sylvatic Trypanosoma cruzi infection in California, USA. Am J Public Health. 1985;75(4):366–9. doi: 10.2105/ajph.75.4.366
[56]
Deneris J, Marshall NA. Biological characterization of a strain of Trypanosoma cruzi Chagas isolated from a human case of trypanosomiasis in California. Am J Trop Med Hyg. 1989;41(4):422–8. pmid:2508500
[57]
Wood FD. Natural and experimental infection of Triatoma protracta Uhler and mammals in California with American human trypanosomiasis. Am J Trop Med Hyg. 1934;14(6):497–517.
[58]
Kagan IG, Norman L, Allain D. Studies on Trypanosoma cruzi isolated in the United States: A review. Rev Biol Trop. 1966;14(1):55–73.
[59]
Beard CB, Pye G, Steurer F, Rodriguez R, Campman R, Peterson AT, et al. Chagas disease in a domestic transmission cycle in southern Texas, USA. Emerg Infect Dis. 2003;9(1):103–5. pmid:12533289 doi: 10.3201/eid0901.020217
[60]
Nabity MB, Barnhart K, Logan KS, Santos RL, Kessell A, Melmed C, et al. An atypical case of Trypanosoma cruzi infection in a young English Mastiff. Vet Parasitol. 2006;140(3–4):356–61. doi: 10.1016/j.vetpar.2006.03.034. pmid:16716519
[61]
Meurs KM, Anthony MA, Slater M, Miller MW. Chronic Trypanosoma cruzi infection in dogs: 11 cases (1987–1996). J Am Vet Med Assoc. 1998;213(4):497–500. pmid:9713531
[62]
Dickerson MF, Astorga NG, Astorga NR, Lewis AD. Chagas disease in two geriatric rhesus macaques (Macaca mulatta) housed in the Pacific Northwest. Comp Med. 2014;64(4):323–8. pmid:25296019
[63]
Davis DJ. Infection in monkeys with strains of Trypanosoma cruzi isolated in the United States. Publ Health Repts. 1943;58(27):1006–10.
[64]
Ochs DE, Hnilica VS, Moser DR, Smith JH, Krichhoff LV. Postmortem diagnosis of autochthonous acute chagasic myocarditis by polymerase chain reaction amplification of a species-specific DNA sequence of Trypanosoma cruzi. Am J Trop Med Hyg. 1996;54(5):526–9. pmid:8644910
[65]
Packchanian A. Infectivity of the Texas strain of Trypanosoma cruzi to man. American Journal Tropical Medicine. 1943;23(3):309–14.
[66]
Kjos SA, Marcet PL, Yabsley MJ, Kitron U, Snowden KF, Logan KS, et al. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. J Med Entomol. 2013;50(5):1126–39. pmid:24180119 doi: 10.1603/me12242
[67]
WHO Expert Committee. Control of Chagas disease. WHO technical report series number 905. World Health Organization, Geneva, Switzerland. 2002.
[68]
Grijalva MJ, Escalante L, Paredes RA, Costales JA, Padilla A, Rowland EC, et al. Seroprevalence and risk factors for Trypanosoma cruzi infection in the Amazon region of Ecuador. Am J Trop Med Hyg. 2003;69:380–5. pmid:14640497
[69]
Herwaldt BL, Grijalva MJ, Newsome AL, McGhee CR, Powell MR, Nemec DG, et al. Use of polymerase chain reaction to diagnose the fifth reported US case of autochthonous transmission of Trypanosoma cruzi, in Tennessee, 1998. J Infect Dis. 2000;181(1):395–9. pmid:10608796 doi: 10.1086/315212
[70]
Wood SF, Wood FD. Nocturnal aggregation and invasion of homes in southern California by insect vectors of Chagas' disease. J Econ Entomol. 1964;57(5):775–6. doi: 10.1093/jee/57.5.775
[71]
Stevens L, Dorn PL, Hobson J, de la Rua NM, Lucero DE, Klotz JH, et al. Vector blood meals and Chagas disease transmission potential, United States. Emerg Infect Dis. 2012;18(4):646–9. doi: 10.3201/eid1804.111396. pmid:22469536
[72]
CDC. Chagas Disease in the Americas 2013 [cited 2014 13 Oct]. Available from: .
[73]
Texas Secretary of State. Texas Register 2012 [cited 2014 13 Oct]. Available from:
[74]
Barnabé C, Yaeger R, Pung O, Tibayrenc M. Trypanosoma cruzi: A considerable phylogenetic divergence indicates that the agent of Chagas disease is indigenous to the native fauna of the United States. Experimental Parasitology Experimental Parasitology. 2001;99(2):73–9. doi: 10.1006/expr.2001.4651. pmid:11748960
[75]
Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science (Washington D C). 1999;286(5448):2333–7. doi: 10.1126/science.286.5448.2333.
[76]
Brown JE, Scholte E- J, Dik M, Den Hartog W, Beeuwkes J, Powell JR. Aedes aegypti mosquitoes imported into the Netherlands, 2010. Emerg Infect Dis. 2011;17(12):2335–7. doi: 10.3201/eid1712.110992. pmid:22172498