全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Rapid Test Based on Leishmania infantum Chimeric rK28 Protein Improves the Diagnosis of Canine Visceral Leishmaniasis by Reducing the Detection of False-Positive Dogs

DOI: 10.1371/journal.pntd.0004333

Full-Text   Cite this paper   Add to My Lib

Abstract:

Visceral Leishmaniasis (VL) has spread to many urban centers worldwide. Dogs are considered the main reservoir of VL, because canine cases often precede the occurrence of human cases. Detection and euthanasia of serologically positive dogs is one of the primary VL control measures utilized in some countries, including Brazil. Using accurate diagnostic tests can minimize one undesirable consequence of this measure, culling false-positive dogs, and reduce the maintenance of false-negative dogs in endemic areas. In December 2011, the Brazilian Ministry of Health replaced the ELISA (EIE CVL) screening method and Indirect Immunofluorescence Test (IFI CVL) confirmatory method with a new protocol using the rapid DPP CVL screening test and EIE CVL confirmatory test. A study of diagnostic accuracy of these two protocols was done by comparing their performance using serum samples collected from a random sample of 780 dogs in an endemic area of VL. All samples were evaluated by culture and real time PCR; 766 out of the 780 dogs were tested using the previous protocol (IFI CVL + EIE CVL) and all 780 were tested using the current protocol (DPP CVL + EIE CVL). Performances of both diagnostic protocols were evaluated using a latent class variable as the gold standard. The current protocol had a higher specificity (0.98 vs. 0.95) and PPV (0.83 vs. 0.70) than the previous protocol, although sensitivity of these two protocols was similar (0.73). When tested using sera from asymptomatic animals, the current protocol had a much higher PPV (0.63 vs. 0.40) than the previous protocol (although the sensitivity of either protocol was the same, 0.71). Considering a range of theoretical CVL prevalences, the projected PPVs were higher for the current protocol than for the previous protocol for each theoretical prevalence value. The findings presented herein show that the current protocol performed better than previous protocol primarily by reducing false-positive results.

References

[1]  Alvar J, Canavate C, Molina R, Moreno J, Nieto J (2004) Canine leishmaniasis. Adv Parasitol 57: 1–88. pmid:15504537 doi: 10.1016/s0065-308x(04)57001-x
[2]  Bevilacqua PD, Paix?o HH, Modena CM, Castro MCPS (2001) Urbaniza??o da leishmaniose visceral em Belo Horizonte. Arq Bras Med Vet Zootec 53. doi: 10.1590/s0102-09352001000100001
[3]  Quinnell RJ, Courtenay O (2009) Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 136: 1915–1934. doi: 10.1017/S0031182009991156. pmid:19835643
[4]  Brasil (2010) Manual de Vigilancia e Controle da Leishmaniose Visceral. In: Epidemiológica DdVn, editor. Brasília: Ministério da Saúde e Secretaria de Vigilancia em Saúde.
[5]  MS, CGDT, CGLAB, DEVIT, SVS (2011) Technical Note joint N° 01/2011 "Enlightenment on replacement of the diagnostic protocol of canine visceral leishmaniasis".
[6]  Figueiredo FB, Madeira MF, Nascimento LD, Abrantes TR, Mouta-Confort E, et al. (2010) Canine visceral leishmaniasis: study of methods for the detection of IgG in serum and eluate samples. Rev Inst Med Trop Sao Paulo 52: 193–196. pmid:21748226 doi: 10.1590/s0036-46652010000400005
[7]  Lira RA, Cavalcanti MP, Nakazawa M, Ferreira AG, Silva ED, et al. (2006) Canine visceral leishmaniosis: a comparative analysis of the EIE-leishmaniose-visceral-canina-Bio-Manguinhos and the IFI-leishmaniose-visceral-canina-Bio-Manguinhos kits. Vet Parasitol 137: 11–16. pmid:16446034 doi: 10.1016/j.vetpar.2005.12.020
[8]  Silva DA, Madeira MF, Teixeira AC, de Souza CM, Figueiredo FB (2011) Laboratory tests performed on Leishmania seroreactive dogs euthanized by the leishmaniasis control program. Vet Parasitol 179: 257–261. doi: 10.1016/j.vetpar.2011.01.048. pmid:21349644
[9]  Boarino A, Scalone A, Gradoni L, Ferroglio E, Vitale F, et al. (2005) Development of recombinant chimeric antigen expressing immunodominant B epitopes of Leishmania infantum for serodiagnosis of visceral leishmaniasis. Clin Diagn Lab Immunol 12: 647–653. pmid:15879027 doi: 10.1128/cdli.12.5.647-653.2005
[10]  Grimaldi G Jr., Teva A, Ferreira AL, dos Santos CB, Pinto IS, et al. (2012) Evaluation of a novel chromatographic immunoassay based on Dual-Path Platform technology (DPP(R) CVL rapid test) for the serodiagnosis of canine visceral leishmaniasis. Trans R Soc Trop Med Hyg 106: 54–59. doi: 10.1016/j.trstmh.2011.10.001. pmid:22137538
[11]  Ferroglio E, Zanet S, Mignone W, Poggi M, Trisciuoglio A, et al. (2013) Evaluation of a rapid device for serological diagnosis of Leishmania infantum infection in dogs as an alternative to immunofluorescence assay and Western blotting. Clin Vaccine Immunol 20: 657–659. doi: 10.1128/CVI.00719-12. pmid:23446218
[12]  Solca Mda S, Bastos LA, Guedes CE, Bordoni M, Borja LS, et al. (2014) Evaluating the accuracy of molecular diagnostic testing for canine visceral leishmaniasis using latent class analysis. PLoS One 9: e103635. doi: 10.1371/journal.pone.0103635. pmid:25076494
[13]  Rodriguez-Cortes A, Ojeda A, Francino O, Lopez-Fuertes L, Timon M, et al. (2010) Leishmania infection: laboratory diagnosing in the absence of a "gold standard". Am J Trop Med Hyg 82: 251–256. doi: 10.4269/ajtmh.2010.09-0366. pmid:20134001
[14]  de Santis B, Santos EGB, de Souza CdSF, Chaves SAdM (2013) Performance of DPP TM immunochromathographic rapid test (IRT) for canine visceral leishmaniasis: comparison with other serological methods in suspected dogs from Cuiabá, Mato Grosso State, Brazil. Braz J Vet Res Anim Sci 50: 198–205.
[15]  Schallig HD, Cardoso L, Hommers M, Kroon N, Belling G, et al. (2004) Development of a dipstick assay for detection of Leishmania-specific canine antibodies. J Clin Microbiol 42: 193–197. pmid:14715752 doi: 10.1128/jcm.42.1.193-197.2004
[16]  Solano-Gallego L, Villanueva-Saz S, Carbonell M, Trotta M, Furlanello T, et al. (2014) Serological diagnosis of canine leishmaniosis: comparison of three commercial ELISA tests (Leiscan, ID Screen and Leishmania 96), a rapid test (Speed Leish K) and an in-house IFAT. Parasit Vectors 7: 111. doi: 10.1186/1756-3305-7-111. pmid:24655335
[17]  Solcà MdS, Guedes CE, Nascimento EG, Oliveira GG, dos Santos WL, et al. (2012) Qualitative and quantitative polymerase chain reaction (PCR) for detection of Leishmania in spleen samples from naturally infected dogs. Vet Parasitol 184: 133–140. doi: 10.1016/j.vetpar.2011.08.026. pmid:21917379
[18]  Rindskopf D, Rindskopf W (1986) The value of latent class analysis in medical diagnosis. Stat Med 5: 21–27. pmid:3961312 doi: 10.1002/sim.4780050105
[19]  Hui SL, Walter SD (1980) Estimating the error rates of diagnostic tests. Biometrics 36: 167–171. pmid:7370371 doi: 10.2307/2530508
[20]  Boelaert M, Rijal S, Regmi S, Singh R, Karki B, et al. (2004) A comparative study of the effectiveness of diagnostic tests for visceral leishmaniasis. Am J Trop Med Hyg 70: 72–77. pmid:14971701
[21]  Boelaert M, Aoun K, Liinev J, Goetghebeur E, Van der Stuyft P (1999) The potential of latent class analysis in diagnostic test validation for canine Leishmania infantum infection. Epidemiol Infect 123: 499–506. pmid:10694163 doi: 10.1017/s0950268899003040
[22]  Langhi DM Jr., Bordin JO, Castelo A, Walter SD, Moraes-Souza H, et al. (2002) The application of latent class analysis for diagnostic test validation of chronic Trypanosoma cruzi infection in blood donors. Braz J Infect Dis 6: 181–187. pmid:12204185 doi: 10.1590/s1413-86702002000400005
[23]  Girardi E, Angeletti C, Puro V, Sorrentino R, Magnavita N, et al. (2009) Estimating diagnostic accuracy of tests for latent tuberculosis infection without a gold standard among healthcare workers. Euro Surveill 14.
[24]  Koukounari A, Webster JP, Donnelly CA, Bray BC, Naples J, et al. (2009) Sensitivities and specificities of diagnostic tests and infection prevalence of Schistosoma haematobium estimated from data on adults in villages northwest of Accra, Ghana. Am J Trop Med Hyg 80: 435–441. pmid:19270295
[25]  Ibironke O, Koukounari A, Asaolu S, Moustaki I, Shiff C (2012) Validation of a new test for Schistosoma haematobium based on detection of Dra1 DNA fragments in urine: evaluation through latent class analysis. PLoS Negl Trop Dis 6: e1464. doi: 10.1371/journal.pntd.0001464. pmid:22235360
[26]  da Silva DA, Madeira Mde F, Abrantes TR, Filho CJ, Figueiredo FB (2013) Assessment of serological tests for the diagnosis of canine visceral leishmaniasis. Vet J 195: 252–253. doi: 10.1016/j.tvjl.2012.06.010. pmid:22789627
[27]  Schubach EY, Figueiredo FB, Romero GA (2014) Accuracy and reproducibility of a rapid chromatographic immunoassay for the diagnosis of canine visceral leishmaniasis in Brazil. Trans R Soc Trop Med Hyg 108: 568–574. doi: 10.1093/trstmh/tru109. pmid:25015665
[28]  Laurenti MD, de Santana Leandro MV Jr., Tomokane TY, De Lucca HR, Aschar M, et al. (2014) Comparative evaluation of the DPP((R)) CVL rapid test for canine serodiagnosis in area of visceral leishmaniasis. Vet Parasitol 205: 444–450. doi: 10.1016/j.vetpar.2014.09.002. pmid:25257505
[29]  Coura-Vital W, Ker HG, Roatt BM, Aguiar-Soares RD, Leal GG, et al. (2014) Evaluation of change in canine diagnosis protocol adopted by the visceral leishmaniasis control program in Brazil and a new proposal for diagnosis. PLoS One 9: e91009. doi: 10.1371/journal.pone.0091009. pmid:24608904
[30]  Barrouin-Melo SM, Larangeira DF, de Andrade Filho FA, Trigo J, Juliao FS, et al. (2006) Can spleen aspirations be safely used for the parasitological diagnosis of canine visceral leishmaniosis? A study on assymptomatic and polysymptomatic animals. Vet J 171: 331–339. pmid:16490717 doi: 10.1016/j.tvjl.2004.11.010
[31]  Barrouin-Melo SM, Larangeira DF, Trigo J, Aguiar PH, dos-Santos WL, et al. (2004) Comparison between splenic and lymph node aspirations as sampling methods for the parasitological detection of Leishmania chagasi infection in dogs. Mem Inst Oswaldo Cruz 99: 195–197. pmid:15250475 doi: 10.1590/s0074-02762004000200014
[32]  Francino O, Altet L, Sanchez-Robert E, Rodriguez A, Solano-Gallego L, et al. (2006) Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet Parasitol 137: 214–221. pmid:16473467 doi: 10.1016/j.vetpar.2006.01.011
[33]  Collins LM, Lanza ST (2010) Latent Class and Latent Transition Analysis with Applications in the Social, Behavioural, and Health Sciences. New Jersey, USA: Wiley.
[34]  Muthén LK, Muthén BO (1998–2010) MPlus Statistical Analysis With Latent Variables User’s Guide. Los Angeles, CA: Muthén & Muthén.
[35]  Canavate C, Herrero M, Nieto J, Cruz I, Chicharro C, et al. (2011) Evaluation of two rK39 dipstick tests, direct agglutination test, and indirect fluorescent antibody test for diagnosis of visceral leishmaniasis in a new epidemic site in highland Ethiopia. Am J Trop Med Hyg 84: 102–106. doi: 10.4269/ajtmh.2011.10-0229. pmid:21212210
[36]  Machado de Assis TS, Rabello A, Werneck GL (2012) Latent class analysis of diagnostic tests for visceral leishmaniasis in Brazil. Trop Med Int Health 17: 1202–1207. doi: 10.1111/j.1365-3156.2012.03064.x. pmid:22897740
[37]  Pan-ngum W, Blacksell SD, Lubell Y, Pukrittayakamee S, Bailey MS, et al. (2013) Estimating the true accuracy of diagnostic tests for dengue infection using bayesian latent class models. PLoS One 8: e50765. doi: 10.1371/journal.pone.0050765. pmid:23349667
[38]  Wu HM, Cordeiro SM, Harcourt BH, Carvalho M, Azevedo J, et al. (2013) Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis. BMC Infect Dis 13: 26. doi: 10.1186/1471-2334-13-26. pmid:23339355

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133