[1] | Podlipaev S. The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int J Parasitol. 2001;31(5–6):648–52. pmid:11334958 doi: 10.1016/s0020-7519(01)00139-4
|
[2] | Simpson AG, Stevens JR, Lukes J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22(4):168–74. pmid:16504583 doi: 10.1016/j.pt.2006.02.006
|
[3] | Zelazny AM, Fedorko DP, Li L, Neva FA, Fischer SH. Evaluation of 7SL RNA gene sequences for the identification of Leishmania spp. Am J Trop Med Hyg. 2005;72(4):415–20. Epub 2005/04/14. pmid:15827278
|
[4] | Luyo-Acero GE, Uezato H, Oshiro M, Takei K, Kariya K, Katakura K, et al. Sequence variation of the cytochrome b gene of various human infecting members of the genus Leishmania and their phylogeny. Parasitology. 2004;128(Pt 5):483–91. Epub 2004/06/08. pmid:15180316 doi: 10.1017/s0031182004004792
|
[5] | Fraga J, Montalvo AM, De Doncker S, Dujardin JC, Van der Auwera G. Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infect Genet Evol. 2010;10(2):238–45. Epub 2009/11/17. doi: 10.1016/j.meegid.2009.11.007. pmid:19913110
|
[6] | Davila AM, Momen H. Internal-transcribed-spacer (ITS) sequences used to explore phylogenetic relationships within Leishmania. Ann Trop Med Parasitol. 2000;94(6):651–4. Epub 2000/11/07. pmid:11064767 doi: 10.1080/00034980050152085
|
[7] | Croan DG, Morrison DA, Ellis JT. Evolution of the genus Leishmania revealed by comparison of DNA and RNA polymerase gene sequences. Mol Biochem Parasitol. 1997;89(2):149–59. Epub 1997/11/19. pmid:9364962 doi: 10.1016/s0166-6851(97)00111-4
|
[8] | Control of the leishmaniases. World Health Organ Tech Rep Ser. 2010;(949):xii–xiii, 1–186, back cover. Epub 2010/01/01. pmid:21485694
|
[9] | Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37(10):1097–106. Epub 2007/05/23. pmid:17517415 doi: 10.1016/j.ijpara.2007.04.003
|
[10] | Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309(5733):436–42. Epub 2005/07/16. pmid:16020728 doi: 10.1126/science.1112680
|
[11] | Alsmark C, Foster PG, Sicheritz-Ponten T, Nakjang S, Embley TM, Hirt RP. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes. Genome Biol. 2013;14(2):R19. Epub 2013/02/28. doi: 10.1186/gb-2013-14-2-r19. pmid:23442822
|
[12] | Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309(5733):416–22. Epub 2005/07/16. pmid:16020726 doi: 10.1126/science.1112642
|
[13] | Opperdoes FR, Michels PA. Horizontal gene transfer in trypanosomatids. Trends in parasitology. 2007;23(10):470–6. Epub 2007/09/11. pmid:17826337 doi: 10.1016/j.pt.2007.08.002
|
[14] | Gogarten JP, Townsend JP. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol. 2005;3(9):679–87. Epub 2005/09/03. pmid:16138096 doi: 10.1038/nrmicro1204
|
[15] | Zhaxybayeva O, Doolittle WF. Lateral gene transfer. Curr Biol. 2011;21(7):R242–6. Epub 2011/04/13. doi: 10.1016/j.cub.2011.01.045. pmid:21481756
|
[16] | Andersson JO. Gene transfer and diversification of microbial eukaryotes. Annu Rev Microbiol. 2009;63:177–93. Epub 2009/07/07. doi: 10.1146/annurev.micro.091208.073203. pmid:19575565
|
[17] | Keeling PJ. Functional and ecological impacts of horizontal gene transfer in eukaryotes. Curr Opin Genet Dev. 2009;19(6):613–9. Epub 2009/11/10. doi: 10.1016/j.gde.2009.10.001. pmid:19897356
|
[18] | Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8):605–18. Epub 2008/07/02. doi: 10.1038/nrg2386. pmid:18591983
|
[19] | Kaessmann H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 2010;20(10):1313–26. Epub 2010/07/24. doi: 10.1101/gr.101386.109. pmid:20651121
|
[20] | de Koning AP, Brinkman FS, Jones SJ, Keeling PJ. Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. Molecular biology and evolution. 2000;17(11):1769–73. Epub 2000/11/09. pmid:11070064 doi: 10.1093/oxfordjournals.molbev.a026275
|
[21] | Doolittle WF. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998;14(8):307–11. Epub 1998/09/02. pmid:9724962 doi: 10.1016/s0168-9525(98)01494-2
|
[22] | Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol. 2013;14(2):R11. doi: 10.1186/gb-2013-14-2-r11. pmid:23375108
|
[23] | Ropars J, Rodríguez de la Vega RC, López-Villavicencio M, Gouzy J, Sallet E, Dumas é LS, Debuchy R, Dupont J, Branca A, Giraud T. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi. Curr Biol. 2015. doi: 10.1016/j.cub.2015.08.025
|
[24] | Strese A, Backlund A, Alsmark C. A recently transferred cluster of bacterial genes in Trichomonas vaginalis—lateral gene transfer and the fate of acquired genes. BMC Evol Biol. 2014;14(1):119. Epub 2014/06/06. doi: 10.1186/1471-2148-14-119
|
[25] | Alves JM, Klein CC, da Silva FM, Costa-Martins AG, Serrano MG, Buck GA, et al. Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol Biol. 2013;13:190. doi: 10.1186/1471-2148-13-190. pmid:24015778
|
[26] | Marri PR, Hao W, Golding GB. The role of laterally transferred genes in adaptive evolution. BMC Evol Biol. 2007;7 Suppl 1:S8. Epub 2007/02/10. pmid:17288581 doi: 10.1186/1471-2148-7-s1-s8
|
[27] | Hao W, Golding GB. Patterns of bacterial gene movement. Molecular biology and evolution. 2004;21(7):1294–307. Epub 2004/04/30. pmid:15115802 doi: 10.1093/molbev/msh129
|
[28] | Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39(7):839–47. Epub 2007/06/19. pmid:17572675 doi: 10.1038/ng2053
|
[29] | Raymond F, Boisvert S, Roy G, Ritt JF, Legare D, Isnard A, et al. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species. Nucleic Acids Res. 2012;40(3):1131–47. Epub 2011/10/15. doi: 10.1093/nar/gkr834. pmid:21998295
|
[30] | Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011. Epub 2011/11/01. doi: 10.1101/gr.122945.111
|
[31] | Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. Epub 1990/10/05. pmid:2231712 doi: 10.1016/s0022-2836(05)80360-2
|
[32] | Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457–62. Epub 2009/10/22. doi: 10.1093/nar/gkp851. pmid:19843604
|
[33] | Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91. Epub 2007/03/24. pmid:17379693 doi: 10.1093/bioinformatics/btm091
|
[34] | Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115. Epub 2012/06/26. pmid:22730293 doi: 10.1093/nar/gks596
|
[35] | Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. Epub 2004/03/23. pmid:15034147 doi: 10.1093/nar/gkh340
|
[36] | Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Systematic biology. 1998;47(1):77–89. Epub 2002/06/18. pmid:12064242 doi: 10.1080/106351598261049
|
[37] | Swofford DL. PAUP 4.0, Phylogenetic Analysis Using Parsimony. Sunderland, Massachusetts: Sunderland, Mass., Sinauer & Associates.; 1996.
|
[38] | Fitch WM. Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systematic Zoology. 1971;20(4):406–16. doi: 10.2307/2412116
|
[39] | Felsenstein J. Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution; international journal of organic evolution. 1985;39(4):783–91. doi: 10.2307/2408678
|
[40] | Zhang Z, Li J, Yu J. Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol. 2006;6:44. Epub 2006/06/03. pmid:16740169
|
[41] | Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics. 2006;4(4):259–63. Epub 2007/05/29. pmid:17531802 doi: 10.1016/s1672-0229(07)60007-2
|
[42] | Alvarez F, Robello C, Vignali M. Evolution of codon usage and base contents in kinetoplastid protozoans. Molecular biology and evolution. 1994;11(5):790–802. Epub 1994/09/01. pmid:7968492
|
[43] | Chauhan N, Vidyarthi AS, Poddar R. Comparative multivariate analysis of codon and amino acid usage in three Leishmania genomes. Genomics Proteomics Bioinformatics. 2011;9(6):218–28. Epub 2012/02/01. doi: 10.1016/S1672-0229(11)60025-9. pmid:22289478
|
[44] | Horn D. Codon usage suggests that translational selection has a major impact on protein expression in trypanosomatids. BMC Genomics. 2008;9:2. Epub 2008/01/05. doi: 10.1186/1471-2164-9-2. pmid:18173843
|
[45] | Puigbo P, Bravo IG, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct. 2008;3:38. Epub 2008/09/18. doi: 10.1186/1745-6150-3-38. pmid:18796141
|
[46] | Rost B. Twilight zone of protein sequence alignments. Protein Eng. 1999;12(2):85–94. Epub 1999/04/09. pmid:10195279 doi: 10.1093/protein/12.2.85
|
[47] | Chanda I, Pan A, Saha SK, Dutta C. Comparative codon and amino acid composition analysis of Tritryps-conspicuous features of Leishmania major. FEBS Lett. 2007;581(30):5751–8. Epub 2007/11/27. pmid:18037385 doi: 10.1016/j.febslet.2007.11.041
|
[48] | Sharp PM, Li WH. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987;15(3):1281–95. Epub 1987/02/11. pmid:3547335 doi: 10.1093/nar/15.3.1281
|
[49] | Lawrence JG, Ochman H. Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol. 1997;44(4):383–97. Epub 1997/04/01. pmid:9089078 doi: 10.1007/pl00006158
|
[50] | Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(16):9413–7. Epub 1998/08/05. pmid:9689094 doi: 10.1073/pnas.95.16.9413
|
[51] | Koski LB, Morton RA, Golding GB. Codon bias and base composition are poor indicators of horizontally transferred genes. Molecular biology and evolution. 2001;18(3):404–12. Epub 2001/03/07. pmid:11230541 doi: 10.1093/oxfordjournals.molbev.a003816
|
[52] | Ragan MA. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol Lett. 2001;201(2):187–91. Epub 2001/07/27. pmid:11470360 doi: 10.1111/j.1574-6968.2001.tb10755.x
|
[53] | Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol. 2007;152(1):35–46. Epub 2006/12/26. pmid:17188763 doi: 10.1016/j.molbiopara.2006.11.009
|
[54] | Worthey EA, Martinez-Calvillo S, Schnaufer A, Aggarwal G, Cawthra J, Fazelinia G, et al. Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. Nucleic Acids Res. 2003;31(14):4201–10. Epub 2003/07/11. pmid:12853638 doi: 10.1093/nar/gkg469
|
[55] | Atwood JA 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, et al. The Trypanosoma cruzi proteome. Science. 2005;309(5733):473–6. Epub 2005/07/16. pmid:16020736 doi: 10.1126/science.1110289
|
[56] | Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(7):3801–6. Epub 1999/03/31. pmid:10097118 doi: 10.1073/pnas.96.7.3801
|
[57] | Hooper SD, Berg OG. Duplication is more common among laterally transferred genes than among indigenous genes. Genome biology. 2003;4(8):R48. Epub 2003/08/14. pmid:12914657
|
[58] | Opperdoes FR, Michels Paul A.M. The Metabolic Repertoire of Leishmania and Implications for Drug Discovery. In: Myler PJ, Fasel N, editors. Leishmania: After the genome. Norfolk (UK): Horizon Scientific Press; 2008.
|
[59] | McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends in parasitology. 2007;23(8):368–75. Epub 2007/07/04. pmid:17606406 doi: 10.1016/j.pt.2007.06.009
|
[60] | Opperdoes FR, Coombs GH. Metabolism of Leishmania: proven and predicted. Trends in parasitology. 2007;23(4):149–58. Epub 2007/02/27. pmid:17320480 doi: 10.1016/j.pt.2007.02.004
|
[61] | Zilberstein D, Blumenfeld N, Liveanu V, Gepstein A, Jaffe CL. Growth at acidic pH induces an amastigote stage-specific protein in Leishmania promastigotes. Mol Biochem Parasitol. 1991;45(1):175–8. Epub 1991/03/01. pmid:2052037 doi: 10.1016/0166-6851(91)90040-d
|
[62] | Whitaker JW, McConkey GA, Westhead DR. The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes. Genome biology. 2009;10(4):R36. Epub 2009/04/17. doi: 10.1186/gb-2009-10-4-r36. pmid:19368726
|