Background Snake envenoming is a significant public health problem in underdeveloped and developing countries. In sub-Saharan Africa, it is estimated that 90,000–400,000 envenomations occur each year, resulting in 3,500–32,000 deaths. Envenomings are caused by snakes from the Viperidae (Bitis spp. and Echis spp.) and Elapidae (Naja spp. and Dendroaspis spp.) families. The African continent has been suffering from a severe antivenom crisis and current antivenom production is only sufficient to treat 25% of snakebite cases. Our aim is to develop high-quality antivenoms against the main snake species found in Mozambique. Methods Adult horses primed with the indicated venoms were divided into 5 groups (B. arietans; B. nasicornis + B. rhinoceros; N. melanoleuca; N. mossambica; N. annulifera + D. polylepis + D. angusticeps) and reimmunized two times for antivenom production. Blood was collected, and plasma was separated and subjected to antibody purification using caprylic acid. Plasmas and antivenoms were subject to titration, affinity determination, cross-recognition assays and in vivo venom lethality neutralization. A commercial anti-Crotalic antivenom was used for comparison. Results The purified antivenoms exhibited high titers against B. arietans, B. nasicornis and B. rhinoceros (5.18 x 106, 3.60 x 106 and 3.50 x 106 U-E/mL, respectively) and N. melanoleuca, N. mossambica and N. annulifera (7.41 x 106, 3.07 x 106 and 2.60 x 106 U-E/mL, respectively), but lower titers against the D. angusticeps and D. polylepis (1.87 x 106 and 1.67 x 106 U-E/mL). All the groups, except anti-N. melanoleuca, showed significant differences from the anti-Crotalic antivenom (7.55 x 106 U-E/mL). The affinity index of all the groups was high, ranging from 31% to 45%. Cross-recognition assays showed the recognition of proteins with similar molecular weight in the venoms and may indicate the possibility of paraspecific neutralization. The three monospecific antivenoms were able to provide in vivo protection. Conclusion Our results indicate that the anti-Bitis and anti-Naja antivenoms developed would be useful for treating snakebite envenomations in Mozambique, although their effectiveness should to be increased. We propose instead the development of monospecific antivenoms, which would serve as the basis for two polyvalent antivenoms, the anti-Bitis and anti-Elapidae. Polyvalent antivenoms represent an increase in treatment quality, as they have a wider range of application and are easier to distribute and administer to snake envenoming victims.
References
[1]
Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008; 5 (11): 1591–1604. doi: 10.1371/journal.pmed.0050218
[2]
Chippaux JP. Estimate of the burden of snakebites in sub-Saharan Africa: a meta-analytic approach. Toxicon. 2011; 57: 586–599. doi: 10.1016/j.toxicon.2010.12.022. pmid:21223975
[3]
Fox JW, Serrano SMT. Timeline of key events in snake venom metalloproteinase research. J Proteomics. 2009; 72: 200–209. doi: 10.1016/j.jprot.2009.01.015. pmid:19344655
[4]
Pugh RNH, Bourdillon CCM, Theakston RDG, Reid HA. Bites by the carpet viper in the Niger valley. Lancet. 1979; 2: 625–627. pmid:90281 doi: 10.1016/s0140-6736(79)91677-5
[5]
Warrell DA, Ormerod LD, Davidson NMcD. Bites by puff-adder (Bitis arietans) in Nigeria, and value of antivenom. Br Med J. 1975; 4: 697–700. pmid:1203728 doi: 10.1136/bmj.4.5998.697
[6]
Gutierréz JM, Theakston RDG, Warrell DA. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med. 2006; 3 (6): 727–731. doi: 10.1371/journal.pmed.0030150
[7]
Pugh RNH, Theakston RDG. Incidence and mortality of snake bite in savanna Nigeria. Lancet. 1980; 2: 1881–1183. doi: 10.1016/s0140-6736(80)92608-2
[8]
Stock RP, Massougbodji A, Alagón A, Chippaux JP. Bringing antivenoms to sub-saharan Africa. Nat Biotechnol. 2007; 25 (2): 173–177. pmid:17287747 doi: 10.1038/nbt0207-173
[9]
Brown NI. Consequences of neglect: analysis of the sub-saharan African snake antivenom market and the global context. PLoS Negl Trop Dis. 2012; 6 (6): 1–7. doi: 10.1371/journal.pntd.0001670
[10]
Warrell DA. Unscrupulous marketing of snake bite antivenoms in Africa and Papua New Guinea: choosing the right product–‘What’s in a name?’. Trans R Soc Trop Med Hyg. 2008; 102: 397–399. doi: 10.1016/j.trstmh.2007.12.005. pmid:18359053
[11]
Laing GD, Renjifo JM, Ruiz F, Harrison RA, Nasidi A, Gutierrez JM, et al. A new Pan African polyspecific antivenom developed in response to the antivenom crisis in Africa. Toxicon. 2003; 42: 35–41. pmid:12893059 doi: 10.1016/s0041-0101(03)00098-9
[12]
Ramos-Cerrillo B, de Roodt AR, Chippaux JP, Olguín L, Casasola A, Guzmán G, et al. Characterization of a new polyvalent antivenom (Antivipmyn Africa) against African vipers and elapids. Toxicon. 2008; 52: 881–888. doi: 10.1016/j.toxicon.2008.09.002. pmid:18926842
[13]
De Almeida CMC, da Silva CL, Couto HP, Escocard RCM, da Rocha DG, Sentinelli LP, et al. Development of process to produce polyvalent IgY antibodies anti-African snake venom. Toxicon. 2008; 52: 293–301. doi: 10.1016/j.toxicon.2008.05.022. pmid:18621073
[14]
Smith PK, Krohn RI, Hermanson GT, Malia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985; 150 (1): 76–85. pmid:3843705 doi: 10.1016/0003-2697(85)90442-7
[15]
Remfry J. Ethical aspects of animal experimentation. In: Tuffery AA, editor. Laboratory animals: an introduction for new experimenters. New York: Interscience; 1987. pp. 5–9.
[16]
Committee Members, International Society on Toxinology. Toxicon. 1992; 30: 1–12. doi: 10.1016/0041-0101(92)90038-7
[17]
WHO guidelines for the production control and regulation of snake antivenom immunoglobulins. 2010.
[18]
Dos Santos MC, Lima MRDI, Furtado GC, Colletto GMDD, Kipnis TL, da Silva WD. Purification of F(ab’)2 anti-snake venom by caprylic acid: a fast method for obtaining IgG fragments with high neutralization activity, purity and yield. Tocixon. 1989; 27 (3): 297–303. doi: 10.1016/0041-0101(89)90177-3
[19]
Almeida CMC, Silva CL, Pena-Couto H, Escocard RCM, Rocha DG, Sentinelli LP, et al. Development of process to produce polyvalent IgY antibodies anti-African snake venom. Toxicon. 2008; 52: 293–301. doi: 10.1016/j.toxicon.2008.05.022. pmid:18621073
Towbin H, Staechelin T, Gordon J. Eletrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA. 1979; 76: 4350–4354. pmid:388439 doi: 10.1073/pnas.76.9.4350
[24]
Laemmli UK. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 1970; 227: 680–685. pmid:5432063 doi: 10.1038/227680a0
Currier RB, Harrison RA, Rowley PD, Laing GD, Wagstaff SC. Intra-specific variation in venom of the African Puff Adder (Bitis arietans): differential expression and activity of snake venom metalloproteinases (SVMPs). Toxicon. 2010; 55: 864–873. doi: 10.1016/j.toxicon.2009.12.009. pmid:20026155
[27]
Calvete JJ, Escolano J, Sanz L. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation: application to taxonomy of congeneric data. J Proteome Res. 2007; 6: 2732–2745. pmid:17559253 doi: 10.1021/pr0701714
[28]
Petras D, Sanz L, Segura A, Herrera M, Villalta M, Solano D, et al. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the Pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res. 2011; 10: 1266–1280. doi: 10.1021/pr101040f. pmid:21171584
[29]
Laustsen AH, Lomonte B, Lohse B, Fernández J, Gutiérrez JM. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development. J Proteomics. 2015; 119: 126–142. doi: 10.1016/j.jprot.2015.02.002. pmid:25688917
[30]
Gutiérrez JM, Rojas E, Quesada L, Léon G, Nú?ez J, Laing GD, et al. Pan-African polyspecific antivenom produced by caprylic acid purification of horse IgG: an alternative to the antivenom crisis in Africa. Trans R Soc Trop Med Hyg. 2005; 99: 468–475. pmid:15837359 doi: 10.1016/j.trstmh.2004.09.014
Casasola A, Ramos-Cerillo B, de Roodt AR, Saucedo AC, Chippaux JP, Alagón A, et al. Paraspecific neutralization of the venom of African species of cobra by an equine antiserum against Naja melanoleuca: a comparative study. Toxicon. 2009; 53: 602–608. doi: 10.1016/j.toxicon.2009.01.011. pmid:19673073
[33]
Tambourgi DV, dos Santos MC, Furtado M de F, de Freitas MC, da Silva WD, Kipnis TL. Pro-inflammatory activities in elapid snake venoms. Br J Pharmacol. 1994; 112(3):723–727. pmid:7921595 doi: 10.1111/j.1476-5381.1994.tb13137.x