全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

FOXP3+ Regulatory T Cells in Hepatic Fibrosis and Splenomegaly Caused by Schistosoma japonicum: The Spleen May Be a Major Source of Tregs in Subjects with Splenomegaly

DOI: 10.1371/journal.pntd.0004306

Full-Text   Cite this paper   Add to My Lib

Abstract:

Schistosoma eggs cause chronic liver inflammation and a complex disease characterized by hepatic fibrosis (HF) and splenomegaly (SplM). FOXP3+ Tregs could regulate inflammation, but it is unclear where these cells are produced and what roles they play in human schistosomiasis. We investigated blood and spleen FOXP3+ Tregs in Chinese fishermen with lifelong exposure to Schistosoma japonicum and various degrees of liver and spleen disease. FOXP3+ Tregs accounted for 4.3% of CD4+ T cells and 41.2% of FOXP3+CD4+ T cells; they could be divided into CD45RA-FOXP3hi effector (eTregs) and CD45RA+FOXP3low naive Tregs. Blood Treg levels were high in severe HF (+1.3; p = 0.004) and in SplM (+1.03, p = 0.03). Multivariate regression showed that severe HF (+0.85, p = 0.01) and SplM (+0.97; p = 0.05) were independently associated with the higher proportion of Tregs in the blood. This effect was mostly due to an increase in the proportion of eTregs in the blood of HF+++ (+0.9%; p = 0.04) and SplM (+0.9%; p = 0.04) patients. The proportion of eTregs expressing CXCR3 in the blood was lower in the HF+++ patients (37.4 +/- 5.9%) than in those with milder fibrosis (51.7 ± 2%; p = 0.009), whereas proportion were similar for cells expressing CD25hi, CCR7, and CTLA-4. Splenectomy improves symptoms and was associated with decreases in blood FOXP3+ Treg (-2.5; p<0.001) and eTreg (-1.3; p = 0.03) levels. SplM spleens contained a high proportion of eTregs with CXCR3, CCR5 and CTLA4 upregulation and CCR7 downregulation. This, and the strong expression of ligands of CXCR3 and CCR5 in the liver (n = 8) but not in the spleen suggested that spleen eTregs migrated to Th1-infiltrated liver tissues. Such migration may be attenuated in hepatosplenic patients due to lower levels of CXCR3 expression on Tregs (p = 0.009). Thus, higher blood Treg levels are associated with severe liver disease and splenomegaly. Our data are consistent with the hypothesis that the spleen is a major source of Tregs in subjects with splenomegaly. In most cases, Tregs migrate to the Th1-infiltrated liver and the lower levels of CXCR3+ Tregs in the blood of patients with severe schistosomiasis suggest that decreases in Treg migration sites of inflammation may aggravate the disease.

References

[1]  Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87. doi: 10.1016/j.cell.2008.05.009. pmid:18510923
[2]  Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev. 241(1):260–8. doi: 10.1111/j.1600-065X.2011.01018.x. pmid:21488902
[3]  Morikawa H, Sakaguchi S. Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol Rev. 259(1):192–205. doi: 10.1111/imr.12174. pmid:24712467
[4]  Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 37(5):785–99. doi: 10.1016/j.immuni.2012.09.010. pmid:23123060
[5]  Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature immunology. 2003;4(4):330–6. pmid:12612578 doi: 10.1038/ni904
[6]  Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61. pmid:12522256 doi: 10.1126/science.1079490
[7]  Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007;446(7136):685–9. pmid:17377532 doi: 10.1038/nature05673
[8]  Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature immunology. 2007;8(3):277–84. pmid:17220892 doi: 10.1038/ni1437
[9]  Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911. doi: 10.1016/j.immuni.2009.03.019. pmid:19464196
[10]  Seddiki N, Santner-Nanan B, Tangye SG, Alexander SI, Solomon M, Lee S, et al. Persistence of naive CD45RA+ regulatory T cells in adult life. Blood. 2006;107(7):2830–8. pmid:16332974 doi: 10.1182/blood-2005-06-2403
[11]  Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ. CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. Journal of immunology. 2004;173(12):7259–68. doi: 10.4049/jimmunol.173.12.7259
[12]  Knoechel B, Lohr J, Kahn E, Bluestone JA, Abbas AK. Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. The Journal of experimental medicine. 2005;202(10):1375–86. pmid:16287710 doi: 10.1084/jem.20050855
[13]  Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity. 2009;30(5):626–35. doi: 10.1016/j.immuni.2009.05.002. pmid:19464985
[14]  Belkaid Y. Regulatory T cells and infection: a dangerous necessity. Nature reviews Immunology. 2007;7(11):875–88. pmid:17948021 doi: 10.1038/nri2189
[15]  Lim HW, Broxmeyer HE, Kim CH. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. Journal of immunology. 2006;177(2):840–51. doi: 10.4049/jimmunol.177.2.840
[16]  Campbell DJ, Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol. 11(2):119–30. doi: 10.1038/nri2916. pmid:21267013
[17]  World Health Organization, Richter J, Hatz C, Campagne G, Bergquist NR, Jenkins JM. Ultrasound in Schistosomiasis: A Pratical Guide to the Standardized use of Ultrasonography for the assessment of Schistosomiasis-related morbidity. TDR/STR/SCHTDR/WHO. 2000.
[18]  Arnaud V, Li J, Wang Y, Fu X, Mengzhi S, Luo X, et al. Regulatory role of interleukin-10 and interferon-gamma in severe hepatic central and peripheral fibrosis in humans infected with Schistosoma japonicum. The Journal of infectious diseases. 2008;198(3):418–26. doi: 10.1086/588826. pmid:18582197
[19]  Sertorio M, Hou X, Carmo RF, Dessein H, Cabantous S, Abdelwahed M, et al. Interleukin-22 and IL-22 binding protein (IL-22BP) regulate fibrosis and cirrhosis in hepatitis C virus and schistosome infections. Hepatology. 2014. doi: 10.1002/hep.27629
[20]  Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature immunology. 2009;10(6):595–602. doi: 10.1038/ni.1731. pmid:19412181
[21]  Santegoets SJ, Dijkgraaf EM, Battaglia A, Beckhove P, Britten CM, Gallimore A, et al. Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol Immunother. 2015;64(10):1271–86. doi: 10.1007/s00262-015-1729-x. pmid:26122357
[22]  Nausch N, Midzi N, Mduluza T, Maizels RM, Mutapi F. Regulatory and activated T cells in human Schistosoma haematobium infections. PloS one. 2011;6(2):e16860. doi: 10.1371/journal.pone.0016860. pmid:21347311
[23]  Watanabe K, Mwinzi PN, Black CL, Muok EM, Karanja DM, Secor WE, et al. T regulatory cell levels decrease in people infected with Schistosoma mansoni on effective treatment. The American journal of tropical medicine and hygiene. 2007;77(4):676–82. pmid:17978070
[24]  Huang YJ, Haist V, Baumgartner W, Fohse L, Prinz I, Suerbaum S, et al. Induced and thymus-derived Foxp3(+) regulatory T cells share a common niche. European journal of immunology. 2014;44(2):460–8. doi: 10.1002/eji.201343463. pmid:24170313
[25]  Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. The Journal of experimental medicine. 2012;209(10):1713–22, S1–19. pmid:22966003 doi: 10.1084/jem.20120822
[26]  Hashimoto N, Shimoda S, Kawanaka H, Tsuneyama K, Uehara H, Akahoshi T, et al. Modulation of CD4(+) T cell responses following splenectomy in hepatitis C virus-related liver cirrhosis. Clinical and experimental immunology. 2011;165(2):243–50. doi: 10.1111/j.1365-2249.2011.04393.x. pmid:21615390
[27]  Turner JD, Jenkins GR, Hogg KG, Aynsley SA, Paveley RA, Cook PC, et al. CD4+CD25+ regulatory cells contribute to the regulation of colonic Th2 granulomatous pathology caused by schistosome infection. PLoS neglected tropical diseases. 2011;5(8):e1269. doi: 10.1371/journal.pntd.0001269. pmid:21858239
[28]  Layland LE, Rad R, Wagner H, da Costa CU. Immunopathology in schistosomiasis is controlled by antigen-specific regulatory T cells primed in the presence of TLR2. European journal of immunology. 2007;37(8):2174–84. pmid:17621370 doi: 10.1002/eji.200737063
[29]  Tang CL, Lei JH, Wang T, Lu SJ, Guan F, Liu WQ, et al. Effect of CD4+ CD25+ regulatory T cells on the immune evasion of Schistosoma japonicum. Parasitology research. 2011;108(2):477–80. doi: 10.1007/s00436-010-2089-2. pmid:20886233
[30]  Santodomingo-Garzon T, Han J, Le T, Yang Y, Swain MG. Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology. 2009;49(4):1267–76. doi: 10.1002/hep.22761. pmid:19140218
[31]  Oo YH, Weston CJ, Lalor PF, Curbishley SM, Withers DR, Reynolds GM, et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J Immunol. 184(6):2886–98. doi: 10.4049/jimmunol.0901216. pmid:20164417
[32]  Helbig KJ, Ruszkiewicz A, Lanford RE, Berzsenyi MD, Harley HA, McColl SR, et al. Differential expression of the CXCR3 ligands in chronic hepatitis C virus (HCV) infection and their modulation by HCV in vitro. Journal of virology. 2009;83(2):836–46. doi: 10.1128/JVI.01388-08. pmid:18987152
[33]  Lapierre P, Beland K, Yang R, Alvarez F. Adoptive transfer of ex vivo expanded regulatory T cells in an autoimmune hepatitis murine model restores peripheral tolerance. Hepatology. 2013;57(1):217–27. doi: 10.1002/hep.26023. pmid:22911361
[34]  Hasegawa H, Inoue A, Kohno M, Lei J, Miyazaki T, Yoshie O, et al. Therapeutic effect of CXCR3-expressing regulatory T cells on liver, lung and intestinal damages in a murine acute GVHD model. Gene therapy. 2008;15(3):171–82. pmid:17989707 doi: 10.1038/sj.gt.3303051
[35]  Oo YH, Banz V, Kavanagh D, Liaskou E, Withers DR, Humphreys E, et al. CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. Journal of hepatology. 2012;57(5):1044–51. doi: 10.1016/j.jhep.2012.07.008. pmid:22796894
[36]  Erhardt A, Wegscheid C, Claass B, Carambia A, Herkel J, Mittrucker HW, et al. CXCR3 deficiency exacerbates liver disease and abrogates tolerance in a mouse model of immune-mediated hepatitis. Journal of immunology. 2011;186(9):5284–93. doi: 10.4049/jimmunol.1003750
[37]  Wasmuth HE, Lammert F, Zaldivar MM, Weiskirchen R, Hellerbrand C, Scholten D, et al. Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology. 2009;137(1):309–19, 19 e1–3. doi: 10.1053/j.gastro.2009.03.053. pmid:19344719
[38]  Sahin H, Borkham-Kamphorst E, Kuppe C, Zaldivar MM, Grouls C, Al-samman M, et al. Chemokine Cxcl9 attenuates liver fibrosis-associated angiogenesis in mice. Hepatology. 2012;55(5):1610–9. doi: 10.1002/hep.25545. pmid:22237831
[39]  Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. European journal of immunology. 2009;39(4):948–55. doi: 10.1002/eji.200839196. pmid:19291701

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133