One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley.
References
[1]
Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med. 2002;347: 1770–1782. pmid:12456854 doi: 10.1056/nejmra020201
[2]
Vollaard AM, Ali S, van Asten H a GH, Widjaja S, Visser LG, Surjadi C, et al. Risk factors for typhoid and paratyphoid fever in Jakarta, Indonesia. JAMA. 2004;291: 2607–15. pmid:15173152 doi: 10.1001/jama.291.21.2607
[3]
Karkey A, Thompson CN, Tran Vu Thieu N, Dongol S, Le Thi Phuong T, Voong Vinh P, et al. Differential epidemiology of Salmonella Typhi and Paratyphi A in Kathmandu, Nepal: a matched case control investigation in a highly endemic enteric fever setting. PLoS Negl Trop Dis. 2013;7: e2391. doi: 10.1371/journal.pntd.0002391. pmid:23991240
[4]
Karkey A, Aryjal A, Basnyat B, Baker S. Kathmandu, Nepal: still an enteric fever capital of the world. J Infect Dev Ctries. 2008;2: 461–5. pmid:19745524 doi: 10.3855/jidc.162
[5]
Karkey A, Arjyal A, Anders KL, Boni MF, Dongol S, Koirala S, et al. The burden and characteristics of enteric fever at a healthcare facility in a densely populated area of Kathmandu. PLoS One. 2010;5: e13988. doi: 10.1371/journal.pone.0013988. pmid:21085575
[6]
Baker S, Holt KE, Clements ACA, Karkey A, Arjyal A, Boni MF, et al. Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol. 2011;1: 110008. doi: 10.1098/rsob.110008. pmid:22645647
[7]
Pradhan R: Dhunge Dhara A Case Study of Three Cities of Kathmandu Valley. Ancient Nepal, Journal of the Department of Archaeology. 1990. Number 116–118, 10–14.
[8]
The World Health Organization. 2011 Guidelines for Drinking-water Quality, Fourth Edition. Availble at
[9]
Rompré A, Servais P, Baudart J, De-Roubin MR, Laurent P. Detection and enumeration of coliforms in drinking water: Current methods and emerging approaches. J Microbiol Methods. 2002;49: 31–54. pmid:11777581 doi: 10.1016/s0167-7012(01)00351-7
[10]
APHA, AWWA, AEF, 1998. Standard Methods for the Examination of Water and Wastewater, 20th edn. Washington, DC.
[11]
Nga TVT, Karkey A, Dongol S, Thuy HN, Dunstan S, Holt K, et al. The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens. BMC Infect Dis. 2010;10: 125. doi: 10.1186/1471-2334-10-125. pmid:20492644
[12]
Cooper P, Walker AW, Reyes J, Chico M, Salter SJ, Vaca M, et al. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS One. 2013;8: e76573. doi: 10.1371/journal.pone.0076573. pmid:24124574
[13]
Dray S, Dufour A-B. The ade4 Package: Implementing the Duality Diagram for Ecologists. J Stat Softw. 2007;22: 1–20. doi: 10.18637/jss.v022.i04
[14]
Team, R. 2012 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. Available at:
[15]
Olson CL. Practical considerations in choosing a MANOVA test statistic: A rejoinder to Stevens. Psychol Bull. 1979;86: 1350–1352. doi: 10.1037/0033-2909.86.6.1350
[16]
Jolliffe I. Principal Component Analysis. Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd; 2014.
[17]
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.
[18]
Hotellling H. Analysis of a complex of statistical variables into principal components. J Educ Psychol. 1933;24(6): (–441.
[19]
Pearson K. 1901 On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine 2:559–572 doi: 10.1080/14786440109462720
[20]
Legendre P. Legendre L. Numerical Ecology. London: Elsevier Science; 2012.
[21]
Aitchison J. The Statistical Analysis of Compositional Data. J R Stat Soc. 1986;44: 139–177. doi: 10.1007/978-94-009-4109-0
[22]
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11: 94. doi: 10.1186/1471-2156-11-94. pmid:20950446
[23]
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24: 1403–5. doi: 10.1093/bioinformatics/btn129. pmid:18397895
[24]
Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Seo K-S, Kang D-K. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol. 2014;52: 646–51. doi: 10.1007/s12275-014-4270-2. pmid:25047525
[25]
Pajarillo EAB, Chae JP, Kim HB, Kim IH, Kang D-K. Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation. Appl Microbiol Biotechnol. 2015;99: 5647–56. doi: 10.1007/s00253-015-6408-5. pmid:25652653
[26]
Warner NR, Levy J, Harpp K, Farruggia F. Drinking water quality in Nepal’s Kathmandu Valley: a survey and assessment of selected controlling site characteristics. Hydrogeol J. 2007;16: 321–334. doi: 10.1007/s10040-007-0238-1
[27]
Karn SK, Harada H. Surface water pollution in three urban territories of Nepal, India, and Bangladesh. Environ Manage. 2001;28: 483–96. pmid:11494067 doi: 10.1007/s002670010238
[28]
Fransen M, Pérodin J, Hada J, He X, Sapkota A. Impact of vehicular strike on particulate matter air quality: Results from a natural intervention study in Kathmandu valley. Environ Res. 2013;122: 52–57. doi: 10.1016/j.envres.2012.12.005. pmid:23433338
[29]
Lopes TJ, Bender DA. Nonpoint sources of volatile organic compounds in urban areas-relative importance of land surfaces and air. Environ Pollut. 1998;101: 221–30. pmid:15093084 doi: 10.1016/s0269-7491(98)00048-7
[30]
Gaffield SJ, Goo RL, Richards LA, Jackson RJ. Public health effects of inadequately managed stormwater runoff. Am J Public Health. 2003;93: 1527–33. pmid:12948975 doi: 10.2105/ajph.93.9.1527
[31]
Pant BR. Ground water quality in the Kathmandu valley of Nepal. Environ Monit Assess. 2011;178: 477–85. doi: 10.1007/s10661-010-1706-y. pmid:20857191
[32]
Camargo JA, Alonso A. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ Int. 2006;32: 831–49. pmid:16781774 doi: 10.1016/j.envint.2006.05.002
[33]
Krapac IG, Dey WS, Roy WR, Smyth CA, Storment E, Sargent SL, et al. Impacts of swine manure pits on groundwater quality. Environ Pollut. 2002;120: 475–92. pmid:12395861 doi: 10.1016/s0269-7491(02)00115-x
[34]
Girones R, Ferrús MA, Alonso JL, Rodriguez-Manzano J, Calgua B, Corrêa A de A, et al. Molecular detection of pathogens in water—the pros and cons of molecular techniques. Water Res. 2010;44: 4325–39. doi: 10.1016/j.watres.2010.06.030. pmid:20619868
[35]
Mermin JH, Villar R, Carpenter J, Roberts L, Samaridden A, Gasanova L, et al. A Massive Epidemic of Multidrug-Resistant Typhoid Fever in Tajikistan Associated with Consumption of Municipal Water. Public Health. 1997; 1416–1422. doi: 10.1086/314766
[36]
Cho JC, Kim SJ. Viable, but non-culturable, state of a green fluorescence protein-tagged environmental isolate of Salmonella typhi in groundwater and pond water. FEMS Microbiol Lett. 1999;170: 257–64. pmid:9919676 doi: 10.1111/j.1574-6968.1999.tb13382.x
[37]
Gibbons SM, Jones E, Bearquiver A, Blackwolf F, Roundstone W, Scott N, et al. Human and environmental impacts on river sediment microbial communities. PLoS One. 2014;9: e97435. doi: 10.1371/journal.pone.0097435. pmid:24841417
[38]
Prest EI, El-Chakhtoura J, Hammes F, Saikaly PE, van Loosdrecht MCM, Vrouwenvelder JS. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization. Water Res. 2014;63: 179–89. doi: 10.1016/j.watres.2014.06.020. pmid:25000200
[39]
Besemer K, Singer G, H?dl I, Battin TJ. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl Environ Microbiol. 2009;75: 7189–95. doi: 10.1128/AEM.01284-09. pmid:19767473
McLellan SL, Eren AM. Discovering new indicators of fecal pollution. Trends Microbiol. Elsevier; 2014;22: 697–706. doi: 10.1016/j.tim.2014.08.002
[42]
Sedgwick WT, Macnutt JS. On the Mills-Reincke Phenomenon and Hazen’s Theorem concerning the Decrease in Mortality from Diseases Other than Typhoid Fever following the Purification of Public Water-Supplies. J Infect Dis. Oxford University Press; 1910;7: 489–564. doi: 10.1093/infdis/7.4.489
[43]
Institute for Integrated Development Studies (IIDS) Kathmandu, 2014., Nepal Economic Outlook 2013/14.