全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Proteomic Identification of Oxidized Proteins in Entamoeba histolytica by Resin-Assisted Capture: Insights into the Role of Arginase in Resistance to Oxidative Stress

DOI: 10.1371/journal.pntd.0004340

Full-Text   Cite this paper   Add to My Lib

Abstract:

Entamoeba histolytica is an obligate protozoan parasite of humans, and amebiasis, an infectious disease which targets the intestine and/or liver, is the second most common cause of human death due to a protozoan after malaria. Although amebiasis is usually asymptomatic, E. histolytica has potent pathogenic potential. During host infection, the parasite is exposed to reactive oxygen species that are produced and released by cells of the innate immune system at the site of infection. The ability of the parasite to survive oxidative stress (OS) is essential for a successful invasion of the host. Although the effects of OS on the regulation of gene expression in E. histolytica and the characterization of some proteins whose function in the parasite's defense against OS have been previously studied, our knowledge of oxidized proteins in E. histolytica is lacking. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the oxidized proteins in oxidatively stressed E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry. We detected 154 oxidized proteins (OXs) and the functions of some of these proteins were associated with antioxidant activity, maintaining the parasite's cytoskeleton, translation, catalysis, and transport. We also found that oxidation of the Gal/GalNAc impairs its function and contributes to the inhibition of E. histolytica adherence to host cells. We also provide evidence that arginase, an enzyme which converts L-arginine into L-ornithine and urea, is involved in the protection of the parasite against OS. Collectively, these results emphasize the importance of OS as a critical regulator of E. histolytica's functions and indicate a new role for arginase in E. histolytica's resistance to OS.

References

[1]  Schensnovich VB. [On the life cycle of Entamoeba histolytica]. Med Parazitol (Mosk). 1967;36(6):712–5. Epub 1967/11/01. pmid:4305047.
[2]  Amoebiasis. Wkly Epidemiol Rec. 1997;72(14):97–9. Epub 1997/04/04. pmid:9100475.
[3]  Walsh JA. Problems in recognition and diagnosis of amebiasis: estimation of the global magnitude of morbidity and mortality. Rev Infect Dis. 1986;8(2):228–38. Epub 1986/03/01. pmid:2871619. doi: 10.1093/clinids/8.2.228
[4]  Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev. 2000;32(3–4):307–26. Epub 2001/01/04. doi: 10.1081/DMR-100102336 pmid:11139131.
[5]  Aiken CT, Kaake RM, Wang X, Huang L. Oxidative stress-mediated regulation of proteasome complexes. Mol Cell Proteomics. 2011;10(5):R110 006924. Epub 2011/05/06. doi: 10.1074/mcp.M110.00692410/5/R110.006924 [pii]. pmid:21543789; PubMed Central PMCID: PMC3098605.
[6]  Wu WS, Tsai RK, Chang CH, Wang S, Wu JR, Chang YX. Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol Cancer Res. 2006;4(10):747–58. Epub 2006/10/20. 4/10/747 [pii] doi: 10.1158/1541-7786.MCR-06-0096 pmid:17050668.
[7]  Vicente JB, Ehrenkaufer GM, Saraiva LM, Teixeira M, Singh U. Entamoeba histolytica modulates a complex repertoire of novel genes in response to oxidative and nitrosative stresses: implications for amebic pathogenesis. Cell Microbiol. 2009;11(1):51–69. Epub 2008/09/10. doi: 10.1111/j.1462-5822.2008.01236.xCMI1236 [pii]. pmid:18778413; PubMed Central PMCID: PMC3418052.
[8]  Pearson RJ, Morf L, Singh U. Regulation of H2O2 stress-responsive genes through a novel transcription factor in the protozoan pathogen Entamoeba histolytica. J Biol Chem. 2013;288(6):4462–74. Epub 2012/12/20. doi: 10.1074/jbc.M112.423467M112.423467 [pii]. pmid:23250742; PubMed Central PMCID: PMC3567695.
[9]  Rastew E, Vicente JB, Singh U. Oxidative stress resistance genes contribute to the pathogenic potential of the anaerobic protozoan parasite, Entamoeba histolytica. Int J Parasitol. 2012;42(11):1007–15. Epub 2012/09/27. doi: 10.1016/j.ijpara.2012.08.006S0020-7519(12)00220-2 [pii]. pmid:23009748; PubMed Central PMCID: PMC3483436.
[10]  Tekwani BL, Mehlotra RK. Molecular basis of defence against oxidative stress in Entamoeba histolytica and Giardia lamblia. Microbes Infect. 1999;1(5):385–94. Epub 1999/12/22. S1286-4579(99)80055-0 [pii]. pmid:10602671. doi: 10.1016/s1286-4579(99)80055-0
[11]  Sen A, Chatterjee NS, Akbar MA, Nandi N, Das P. The 29-kilodalton thiol-dependent peroxidase of Entamoeba histolytica is a factor involved in pathogenesis and survival of the parasite during oxidative stress. Eukaryot Cell. 2007;6(4):664–73. Epub 2007/02/20. EC.00308-06 [pii] doi: 10.1128/EC.00308-06 pmid:17307964; PubMed Central PMCID: PMC1865653.
[12]  Bruchhaus I, Tannich E. Induction of the iron-containing superoxide dismutase in Entamoeba histolytica by a superoxide anion-generating system or by iron chelation. Mol Biochem Parasitol. 1994;67(2):281–8. Epub 1994/10/01. pmid:7870132. doi: 10.1016/0166-6851(94)00143-x
[13]  Husain A, Sato D, Jeelani G, Soga T, Nozaki T. Dramatic Increase in Glycerol Biosynthesis upon Oxidative Stress in the Anaerobic Protozoan Parasite Entamoeba histolytica. Plos Neglect Trop D. 2012;6(9). Artn E1831 doi: 10.1371/Journal.Pntd.0001831 ISI:000309528100031.
[14]  Kohr MJ, Sun J, Aponte A, Wang G, Gucek M, Murphy E, et al. Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ Res. 2011;108(4):418–26. Epub 2011/01/05. doi: 10.1161/CIRCRESAHA.110.232173CIRCRESAHA.110.232173 [pii]. pmid:21193739; PubMed Central PMCID: PMC3042536.
[15]  Dastidar PG, Majumder S, Lohia A. Eh Klp5 is a divergent member of the kinesin 5 family that regulates genome content and microtubular assembly in Entamoeba histolytica. Cell Microbiol. 2007;9(2):316–28. Epub 2006/08/24. CMI788 [pii] doi: 10.1111/j.1462-5822.2006.00788.x pmid:16925786.
[16]  Fisher O, Siman-Tov R, Ankri S. Pleiotropic phenotype in Entamoeba histolytica overexpressing DNA methyltransferase (Ehmeth). Mol Biochem Parasitol. 2006;147(1):48–54. pmid:16497397. doi: 10.1016/j.molbiopara.2006.01.007
[17]  Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. Epub 2012/08/30. pmid:22930834. doi: 10.1038/nmeth.2089
[18]  Rist C, Johnson TR, Becker A, Leber AW, Huber A, Busch S, et al. [Dual-source cardiac CT imaging with improved temporal resolution: Impact on image quality and analysis of left ventricular function]. Radiologe. 2007;47(4):287–90, 92–4. Epub 2007/02/08. doi: 10.1007/s00117-007-1479-7 pmid:17285272.
[19]  Ankri S, Padilla-Vaca F, Stolarsky T, Koole L, Katz U, Mirelman D. Antisense inhibition of expression of the light subunit (35 kDa) of the Gal/GalNac lectin complex inhibits Entamoeba histolytica virulence. Molecular microbiology. 1999;33(2):327–37. pmid:10411749. doi: 10.1046/j.1365-2958.1999.01476.x
[20]  Gilchrist CA, Baba DJ, Zhang Y, Crasta O, Evans C, Caler E, et al. Targets of the Entamoeba histolytica transcription factor URE3-BP. PLoS Negl Trop Dis. 2008;2(8):e282. Epub 2008/10/11. doi: 10.1371/journal.pntd.0000282 pmid:18846235; PubMed Central PMCID: PMC2565699.
[21]  Hertz R, Ben Lulu S, Shahi P, Trebicz-Geffen M, Benhar M, Ankri S. Proteomic identification of S-nitrosylated proteins in the parasite Entamoeba histolytica by resin-assisted capture: insights into the regulation of the Gal/GalNAc lectin by nitric oxide. PLoS One. 2014;9(3):e91518. Epub 2014/03/15. doi: 10.1371/journal.pone.0091518PONE-D-13-51231 [pii]. pmid:24626316; PubMed Central PMCID: PMC3953491.
[22]  Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer's disease. Neuroscience. 2001;103(2):373–83. Epub 2001/03/14. S0306-4522(00)00580-7 [pii]. pmid:11246152. doi: 10.1016/s0306-4522(00)00580-7
[23]  Hertz R, Tovy A, Kirschenbaum M, Geffen M, Nozaki T, Adir N, et al. The Entamoeba histolytica Dnmt2 homolog (Ehmeth) confers resistance to nitrosative stress. Eukaryot Cell. 2014;13(4):494–503. Epub 2014/02/25. doi: 10.1128/EC.00031-14EC.00031-14 [pii]. pmid:24562908; PubMed Central PMCID: PMC4000097.
[24]  Elnekave K, Siman-Tov R, Ankri S. Consumption of L-arginine mediated by Entamoeba histolytica L-arginase (EhArg) inhibits amoebicidal activity and nitric oxide production by activated macrophages. Parasite Immunol. 2003;25(11–12):597–608. Epub 2004/04/01. doi: 10.1111/j.0141-9838.2004.00669.xPIM669 [pii]. pmid:15053781.
[25]  Dorries K, Lalk M. Metabolic footprint analysis uncovers strain specific overflow metabolism and D-isoleucine production of Staphylococcus aureus COL and HG001. PLoS One. 2013;8(12):e81500. Epub 2013/12/07. doi: 10.1371/journal.pone.0081500PONE-D-13-28725 [pii]. pmid:24312553; PubMed Central PMCID: PMC3849228.
[26]  Dorries K, Schlueter R, Lalk M. Impact of Antibiotics with Various Target Sites on the Metabolome of Staphylococcus aureus. Antimicrob Agents Ch. 2014;58(12):7151–63. doi: 10.1128/Aac.03104-14 ISI:000345221000015.
[27]  Cabeza MS, Guerrero SA, Iglesias AA, Arias DG. New enzymatic pathways for the reduction of reactive oxygen species in Entamoeba histolytica. Biochim Biophys Acta. 2015;1850(6):1233–44. Epub 2015/03/01. doi: 10.1016/j.bbagen.2015.02.010S0304-4165(15)00072-0 [pii]. pmid:25725270.
[28]  Mares RE, Minchaca AZ, Villagrana S, Melendez-Lopez SG, Ramos MA. Analysis of the isomerase and chaperone-like activities of an amebic PDI (EhPDI). Biomed Res Int. 2015;2015:286972. Epub 2015/02/20. doi: 10.1155/2015/286972 pmid:25695056; PubMed Central PMCID: PMC4324885.
[29]  Wassmann C, Hellberg A, Tannich E, Bruchhaus I. Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem. 1999;274(37):26051–6. Epub 1999/09/03. pmid:10473552. doi: 10.1074/jbc.274.37.26051
[30]  Kumar N, Somlata , Mazumder M, Dutta P, Maiti S, Gourinath S. EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica. PLoS Pathog. 2014;10(9):e1004362. Epub 2014/09/12. doi: 10.1371/journal.ppat.1004362PPATHOGENS-D-14-00504 [pii]. pmid:25210743; PubMed Central PMCID: PMC4161475.
[31]  Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog Mol Subcell Biol. 2001;27:57–89. Epub 2001/09/29. pmid:11575161.
[32]  Proud CG. eIF2 and the control of cell physiology. Semin Cell Dev Biol. 2005;16(1):3–12. Epub 2005/01/22. S1084-9521(04)00106-5 [pii] doi: 10.1016/j.semcdb.2004.11.004 pmid:15659334.
[33]  Venkataramaiah NR, Reinaerts HH, Van Raalte JA, Shaba KJ. Pseudomalignant cutaneous amoebiasis. Trop Doct. 1982;12(4 Pt 1):162–3. Epub 1982/10/01. pmid:7179440.
[34]  Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6(4):275–7. Epub 2009/03/24. doi: 10.1038/nmeth.1314nmeth.1314 [pii]. pmid:19305406.
[35]  Korner A. Effect of cycloheximide on protein biosynthesis in rat liver. Biochem J. 1966;101(3):627–31. Epub 1966/12/01. pmid:16742435; PubMed Central PMCID: PMC1270163. doi: 10.1042/bj1010627
[36]  Ghosh AS, Dutta S, Raha S. Hydrogen peroxide-induced apoptosis-like cell death in Entamoeba histolytica. Parasitol Int. 2010;59(2):166–72. Epub 2010/01/19. doi: 10.1016/j.parint.2010.01.001S1383-5769(10)00002-4 [pii]. pmid:20079879.
[37]  Tavares P, Rigothier MC, Khun H, Roux P, Huerre M, Guillen N. Roles of cell adhesion and cytoskeleton activity in Entamoeba histolytica pathogenesis: a delicate balance. Infect Immun. 2005;73(3):1771–8. Epub 2005/02/26. 73/3/1771 [pii] doi: 10.1128/IAI.73.3.1771-1778.2005 pmid:15731078; PubMed Central PMCID: PMC1064917.
[38]  Labruyere E, Guillen N. Host tissue invasion by Entamoeba histolytica is powered by motility and phagocytosis. Arch Med Res. 2006;37(2):253–8. Epub 2005/12/29. S0188-4409(05)00343-7 [pii] doi: 10.1016/j.arcmed.2005.10.005 pmid:16380326.
[39]  Goldschmidt-Clermont PJ, Moldovan L. Stress, superoxide, and signal transduction. Gene Expr. 1999;7(4–6):255–60. Epub 1999/08/10. pmid:10440226.
[40]  Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res. 2006;71(2):216–25. Epub 2006/04/18. S0008-6363(06)00114-3 [pii] doi: 10.1016/j.cardiores.2006.02.033 pmid:16616906; PubMed Central PMCID: PMC1934427.
[41]  Hertelendi Z, Toth A, Borbely A, Galajda Z, van der Velden J, Stienen GJ, et al. Oxidation of myofilament protein sulfhydryl groups reduces the contractile force and its Ca2+ sensitivity in human cardiomyocytes. Antioxid Redox Signal. 2008;10(7):1175–84. Epub 2008/03/12. doi: 10.1089/ars.2007.2014 pmid:18331201.
[42]  Laragione T, Bonetto V, Casoni F, Massignan T, Bianchi G, Gianazza E, et al. Redox regulation of surface protein thiols: identification of integrin alpha-4 as a molecular target by using redox proteomics. Proc Natl Acad Sci U S A. 2003;100(25):14737–41. Epub 2003/12/06. doi: 10.1073/pnas.24345161002434516100 [pii]. pmid:14657342; PubMed Central PMCID: PMC299788.
[43]  DalleDonne I, Milzani A, Colombo R. H2O2-treated actin: assembly and polymer interactions with cross-linking proteins. Biophys J. 1995;69(6):2710–9. Epub 1995/12/01. S0006-3495(95)80142-6 [pii] doi: 10.1016/S0006-3495(95)80142-6 pmid:8599677; PubMed Central PMCID: PMC1236508.
[44]  Milzani A, DalleDonne I, Colombo R. Prolonged oxidative stress on actin. Arch Biochem Biophys. 1997;339(2):267–74. Epub 1997/03/15. S0003-9861(96)99847-1 [pii] doi: 10.1006/abbi.1996.9847 pmid:9056258.
[45]  Dalle-Donne I, Rossi R, Milzani A, Di Simplicio P, Colombo R. The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic Biol Med. 2001;31(12):1624–32. Epub 2001/12/18. S0891584901007493 [pii]. pmid:11744337. doi: 10.1016/s0891-5849(01)00749-3
[46]  Hinshaw DB, Burger JM, Beals TF, Armstrong BC, Hyslop PA. Actin polymerization in cellular oxidant injury. Arch Biochem Biophys. 1991;288(2):311–6. Epub 1991/08/01. pmid:1898028. doi: 10.1016/0003-9861(91)90200-3
[47]  Omann GM, Harter JM, Burger JM, Hinshaw DB. H2O2-induced increases in cellular F-actin occur without increases in actin nucleation activity. Arch Biochem Biophys. 1994;308(2):407–12. Epub 1994/02/01. S0003-9861(84)71057-5 [pii] doi: 10.1006/abbi.1994.1057 pmid:8109969.
[48]  Mocali A, Caldini R, Chevanne M, Paoletti F. Induction, effects, and quantification of sublethal oxidative stress by hydrogen peroxide on cultured human fibroblasts. Exp Cell Res. 1995;216(2):388–95. Epub 1995/02/01. S0014-4827(85)71049-X [pii] doi: 10.1006/excr.1995.1049 pmid:7843283.
[49]  Hightower RC, Meagher RB. The molecular evolution of actin. Genetics. 1986;114(1):315–32. Epub 1986/09/01. pmid:3770469; PubMed Central PMCID: PMC1202938.
[50]  Fedorova M, Kuleva N, Hoffmann R. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress. J Proteome Res. 2010;9(3):1598–609. Epub 2010/01/13. doi: 10.1021/pr901099e pmid:20063901.
[51]  Brandes N, Reichmann D, Tienson H, Leichert LI, Jakob U. Using quantitative redox proteomics to dissect the yeast redoxome. J Biol Chem. 2011;286(48):41893–903. Epub 2011/10/07. doi: 10.1074/jbc.M111.296236M111.296236 [pii]. pmid:21976664; PubMed Central PMCID: PMC3308895.
[52]  Patel J, McLeod LE, Vries RG, Flynn A, Wang X, Proud CG. Cellular stresses profoundly inhibit protein synthesis and modulate the states of phosphorylation of multiple translation factors. Eur J Biochem. 2002;269(12):3076–85. Epub 2002/06/20. 2992 [pii]. pmid:12071973. doi: 10.1046/j.1432-1033.2002.02992.x
[53]  Zhong J, Xiao C, Gu W, Du G, Sun X, He QY, et al. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress. PLoS Genet. 2015;11(6):e1005302. Epub 2015/06/20. doi: 10.1371/journal.pgen.1005302PGENETICS-D-14-03287 [pii]. pmid:26090660.
[54]  Leitsch D, Kolarich D, Wilson IB, Altmann F, Duchene M. Nitroimidazole action in Entamoeba histolytica: a central role for thioredoxin reductase. PLoS Biol. 2007;5(8):e211. Epub 2007/08/07. 07-PLBI-RA-0204 [pii] doi: 10.1371/journal.pbio.0050211 pmid:17676992; PubMed Central PMCID: PMC1933457.
[55]  Beyer WF Jr., Fridovich I. Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry. 1987;26(5):1251–7. Epub 1987/03/10. pmid:3552043. doi: 10.1021/bi00379a008
[56]  Martinez A, Peluffo G, Petruk AA, Hugo M, Pineyro D, Demicheli V, et al. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer. J Biol Chem. 2014;289(18):12760–78. Epub 2014/03/13. doi: 10.1074/jbc.M113.545590M113.545590 [pii]. pmid:24616096; PubMed Central PMCID: PMC4007465.
[57]  Herrera-Rodriguez SE, Baylon-Pacheco L, Talamas-Rohana P, Rosales-Encina JL. Cloning and partial characterization of Entamoeba histolytica PTPases. Biochem Biophys Res Commun. 2006;342(4):1014–21. Epub 2006/03/04. S0006-291X(06)00350-0 [pii] doi: 10.1016/j.bbrc.2006.02.055 pmid:16513090.
[58]  Leslie NR, Lindsay Y, Ross SH, Downes CP. Redox regulation of phosphatase function. Biochem Soc Trans. 2004;32(Pt 6):1018–20. Epub 2004/10/28. BST0321018 [pii] doi: 10.1042/BST0321018 pmid:15506952.
[59]  Wright VP, Reiser PJ, Clanton TL. Redox modulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle. J Physiol. 2009;587(Pt 23):5767–81. Epub 2009/10/21. doi: 10.1113/jphysiol.2009.178285jphysiol.2009.178285 [pii]. pmid:19841000; PubMed Central PMCID: PMC2805384.
[60]  Ostman A, Frijhoff J, Sandin A, Bohmer FD. Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem. 2011;150(4):345–56. Epub 2011/08/23. doi: 10.1093/jb/mvr104mvr104 [pii]. pmid:21856739.
[61]  van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature. 2003;423(6941):773–7. Epub 2003/06/13. doi: 10.1038/nature01681nature01681 [pii]. pmid:12802339.
[62]  Bhattacharya A, Padhan N, Jain R, Bhattacharya S. Calcium-binding proteins of Entamoeba histolytica. Arch Med Res. 2006;37(2):221–5. Epub 2005/12/29. S0188-4409(05)00335-8 [pii] doi: 10.1016/j.arcmed.2005.10.002 pmid:16380322.
[63]  Makioka A, Kumagai M, Ohtomo H, Kobayashi S, Takeuchi T. Effect of calcium antagonists, calcium channel blockers and calmodulin inhibitors on the growth and encystation of Entamoeba histolytica and E. invadens. Parasitol Res. 2001;87(10):833–7. Epub 2001/11/02. pmid:11688889. doi: 10.1007/s004360100453
[64]  Martinez-Higuera A, Salas-Casas A, Calixto-Galvez M, Chavez-Munguia B, Perez-Ishiwara DG, Ximenez C, et al. Identification of calcium-transporting ATPases of Entamoeba histolytica and cellular localization of the putative SERCA. Exp Parasitol. 2013;135(1):79–86. Epub 2013/06/27. doi: 10.1016/j.exppara.2013.06.004S0014-4894(13)00162-8 [pii]. pmid:23800535.
[65]  Zaidi A. Plasma membrane Ca-ATPases: Targets of oxidative stress in brain aging and neurodegeneration. World J Biol Chem. 2010;1(9):271–80. Epub 2011/05/04. doi: 10.4331/wjbc.v1.i9.271 pmid:21537484; PubMed Central PMCID: PMC3083975.
[66]  De Muylder G, Daulouede S, Lecordier L, Uzureau P, Morias Y, Van Den Abbeele J, et al. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity. PLoS Pathog. 2013;9(10):e1003731. Epub 2013/11/10. doi: 10.1371/journal.ppat.1003731PPATHOGENS-D-13-00249 [pii]. pmid:24204274; PubMed Central PMCID: PMC3814429.
[67]  da Silva MF, Floeter-Winter LM. Arginase in Leishmania. Subcell Biochem. 2014;74:103–17. Epub 2013/11/23. doi: 10.1007/978-94-007-7305-9_4 pmid:24264242.
[68]  McGee DJ, Kumar S, Viator RJ, Bolland JR, Ruiz J, Spadafora D, et al. Helicobacter pylori thioredoxin is an arginase chaperone and guardian against oxidative and nitrosative stresses. J Biol Chem. 2006;281(6):3290–6. Epub 2005/12/16. M506139200 [pii] doi: 10.1074/jbc.M506139200 pmid:16354674.
[69]  Iyamu EW, Perdew HA, Woods GM. Oxidant-mediated modification of the cellular thiols is sufficient for arginase activation in cultured cells. Mol Cell Biochem. 2012;360(1–2):159–68. Epub 2011/09/16. doi: 10.1007/s11010-011-1053-5 pmid:21918827.
[70]  Jhingran A, Padmanabhan PK, Singh S, Anamika K, Bakre AA, Bhattacharya S, et al. Characterization of the Entamoeba histolytica ornithine decarboxylase-like enzyme. PLoS Negl Trop Dis. 2008;2(1):e115. Epub 2008/02/01. doi: 10.1371/journal.pntd.0000115 pmid:18235846; PubMed Central PMCID: PMC2217671.
[71]  Arteaga-Nieto P, Lopez-Romero E, Teran-Figueroa Y, Cano-Canchola C, Luna Arias JP, Flores-Carreon A, et al. Entamoeba histolytica: purification and characterization of ornithine decarboxylase. Exp Parasitol. 2002;101(4):215–22. Epub 2003/02/22. S0014489402001376 [pii]. pmid:12594962. doi: 10.1016/s0014-4894(02)00137-6
[72]  Preeti , Tapas S, Kumar P, Madhubala R, Tomar S. Biochemical, mutational and in silico structural evidence for a functional dimeric form of the ornithine decarboxylase from Entamoeba histolytica. PLoS Negl Trop Dis. 2012;6(2):e1559. Epub 2012/03/06. doi: 10.1371/journal.pntd.0001559PNTD-D-11-00951 [pii]. pmid:22389745; PubMed Central PMCID: PMC3289617.
[73]  Anderson IJ, Loftus BJ. Entamoeba histolytica: observations on metabolism based on the genome sequence. Exp Parasitol. 2005;110(3):173–7. Epub 2005/06/16. S0014-4894(05)00085-8 [pii] doi: 10.1016/j.exppara.2005.03.010 pmid:15955308.
[74]  Bakker-Grunwald T, Martin JB, Klein G. Characterization of glycogen and amino acid pool of Entamoeba histolytica by 13C-NMR spectroscopy. J Eukaryot Microbiol. 1995;42(4):346–9. Epub 1995/07/01. pmid:7620458. doi: 10.1111/j.1550-7408.1995.tb01592.x
[75]  Groppa MD, Benavides MP. Polyamines and abiotic stress: recent advances. Amino Acids. 2008;34(1):35–45. Epub 2007/03/16. doi: 10.1007/s00726-007-0501-8 pmid:17356805.
[76]  Mares RE, Magana PD, Melendez-Lopez SG, Licea AF, Cornejo-Bravo JM, Ramos MA. Oxidative folding and reductive activities of EhPDI, a protein disulfide isomerase from Entamoeba histolytica. Parasitol Int. 2009;58(3):311–3. Epub 2009/04/14. doi: 10.1016/j.parint.2009.04.001S1383-5769(09)00037-3 [pii]. pmid:19361571.
[77]  Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A. Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. FASEB J. 1998;12(7):561–9. Epub 1998/05/12. pmid:9576483.
[78]  Mollapour M, Neckers L. Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta. 2012;1823(3):648–55. Epub 2011/08/23. doi: 10.1016/j.bbamcr.2011.07.018S0167-4889(11)00217-5 [pii]. pmid:21856339; PubMed Central PMCID: PMC3226900.
[79]  Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441(7092):513–7. Epub 2006/05/26. nature04782 [pii] doi: 10.1038/nature04782 pmid:16724068.
[80]  Misra HP. Inhibition of superoxide dismutase by nitroprusside and electron spin resonance observations on the formation of a superoxide-mediated nitroprusside nitroxyl free radical. J Biol Chem. 1984;259(20):12678–84. Epub 1984/10/25. pmid:6092342.
[81]  Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AH, et al. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem. 2008;283(50):35265–72. Epub 2008/10/09. doi: 10.1074/jbc.M805287200M805287200 [pii]. pmid:18840608; PubMed Central PMCID: PMC3259880.
[82]  Sun J, Steenbergen C, Murphy E. S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal. 2006;8(9–10):1693–705. Epub 2006/09/22. doi: 10.1089/ars.2006.8.1693 pmid:16987022; PubMed Central PMCID: PMC2443861.
[83]  Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol. 2002;4(10):743–9. Epub 2002/09/24. doi: 10.1038/ncb851ncb851 [pii]. pmid:12244325.
[84]  Lounifi I, Arc E, Molassiotis A, Job D, Rajjou L, Tanou G. Interplay between protein carbonylation and nitrosylation in plants. Proteomics. 2013;13(3–4):568–78. Epub 2012/10/05. doi: 10.1002/pmic.201200304 pmid:23034931.
[85]  Raines KW, Bonini MG, Campbell SL. Nitric oxide cell signaling: S-nitrosation of Ras superfamily GTPases. Cardiovasc Res. 2007;75(2):229–39. Epub 2007/06/15. S0008-6363(07)00194-0 [pii] doi: 10.1016/j.cardiores.2007.04.013 pmid:17559822.
[86]  Ferro E, Goitre L, Retta SF, Trabalzini L. The Interplay between ROS and Ras GTPases: Physiological and Pathological Implications. J Signal Transduct. 2012;2012:365769. Epub 2011/12/17. doi: 10.1155/2012/365769 pmid:22175014; PubMed Central PMCID: PMC3235814.
[87]  Stadtman ER, Berlett BS. Fenton chemistry. Amino acid oxidation. J Biol Chem. 1991;266(26):17201–11. Epub 1991/09/15. pmid:1894614.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133