全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity

DOI: 10.1371/journal.pntd.0004365

Full-Text   Cite this paper   Add to My Lib

Abstract:

A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites.

References

[1]  Mougneau E, Bihl F and Glaichenhaus N (2011) Cell biology and immunology of Leishmania. Immunological Reviews 240: 286–296. doi: 10.1111/j.1600-065X.2010.00983.x. pmid:21349100
[2]  Kedzierski L (2010) Leishmaniasis vaccine: where are we today? Journal of Global Infectious Diseases 2: 177–185. doi: 10.4103/0974-777X.62881. pmid:20606974
[3]  Maltezou HC (2010) Drug resistance in visceral leishmaniasis. Journal of Biomedicine and Biotechnology 617521. doi: 10.1155/2010/617521. pmid:19888437
[4]  Leishmaniasis. 2014.: . Accessed July 12, 2015.
[5]  Zhang J, Fan J, Venneti S, Cross JR., Takagi T, Bhinder B, et al. (2014) Asparagine plays a critical role in regulating cellular adaption to glutamine depletion. Molecular Cell 56: 205–218. doi: 10.1016/j.molcel.2014.08.018. pmid:25242145
[6]  Ubuka T and Meister A (1971) Studies on the utilization of asparagine by mouse leukemia cells. Journal of National Cancer Institute 46: 291–298.
[7]  Hofreuter D, Novik V, Galan JE (2008) Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4: 425–433. doi: 10.1016/j.chom.2008.10.002. pmid:18996343
[8]  Kullas AL., McClelland M, Yang HJ, Tam JW, Torres A, Porwollik S, et al. (2012) L-asparaginase II produced by Salmonella typhimurium inhibits T cell responses and mediates virulence. Cell Host Microbe 12: 791–798. doi: 10.1016/j.chom.2012.10.018. pmid:23245323
[9]  Leduc D, Gallaud J, Stingl K, de Reuse H (2010) Coupled amino acid deamidase-transport systems essential for Helicobacter pylori colonization. Infection and Immunity 78: 2782–2792. doi: 10.1128/IAI.00149-10. pmid:20368342
[10]  Scotti C, Sommi P, Pasquetto MV, Cappelletti D, Stivala S, Mignosi P, et al. (2010) Cell cycle inhibition by Helicobacter pylori L-asparaginase. PLoS One 5: e13892. doi: 10.1371/journal.pone.0013892. pmid:21085483
[11]  Shibayama K, Takeuchi H, Wachino J, Mori S, Arakawa Y (2011) Biochemical and pathophysiological characterization of Helicobacter pylori asparaginase. Microbiology and Immunology 55: 408–417. doi: 10.1111/j.1348-0421.2011.00333.x. pmid:21395663
[12]  Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, Wallach JB et al. (2014) Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resists stress during infection. Plos Pathogens 10: e1003928. doi: 10.1371/journal.ppat.1003928. pmid:24586151
[13]  Baruch M, Belotserkovsky I, Hertzog BB, Ravins M, Dov E, McIver KS et al. (2014) An extracellular bacterial pathogen modulates host metabolism to regulate its own sensing and proliferation. Cell 156: 97–108. doi: 10.1016/j.cell.2013.12.007. pmid:24439371
[14]  Gesbert G, Ramond E, Rigard M, Frapy E, Dupuis M, Dubail I. et al. (2014) Asparagine assimilation is critical for intracellular replication and dissemination of Francisella. Cellular Microbiology 16: 434–449. doi: 10.1111/cmi.12227. pmid:24134488
[15]  Nakatsu T, Kato H, Oda J (1998) Crystal structure of asparagine synthetase reveals a close evolutionary relationship to class II aminoacyl-tRNA synthetase. Nature Structural Biology 5: 15–19. pmid:9437423 doi: 10.1038/nsb0198-15
[16]  Sugiyama A, Kato H, Nishioka T, and Oda J (1992) Overexpression and purification of asparagine synthetase from Escherichia coli. Bioscience, Biotechnology and Biochemistry 56: 376–379. doi: 10.1271/bbb.56.376
[17]  Humbert R, Simoni RD (1980) Genetic and biomedical studies demonstrating a second gene coding for asparagine synthetase in Escherichia coli. Journal of Bacteriology 142: 212–220. pmid:6102982
[18]  Andrulis IL, Chen J, Ray PN (1987) Isolation of human cDNAs for asparagine synthetase and expression in Jensen rat sarcoma cells. Molecular Cell Biology 7: 2435–2443. doi: 10.1128/mcb.7.7.2435
[19]  Andrulis I. L., Shotwell M., Evans-Blackler S., Zalkin H., Siminovitch L., Ray P. N. (1989) “Fine structure analysis of the Chinese hamster AS gene encoding asparagine synthetase.”, Gene, 80, 75–85. pmid:2477309 doi: 10.1016/0378-1119(89)90252-7
[20]  Ramos F, Wiame JM (1980) Two asparagine synthetases in Saccharomyces cerevisiae. European Journal of Biochemistry 108: 373–377. pmid:6105958 doi: 10.1111/j.1432-1033.1980.tb04732.x
[21]  Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, et al. (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318: 245–250. pmid:17932292 doi: 10.1126/science.1143609
[22]  GC (2003) Primary N-assimilation into amino acids in Arabidopsis. The Arabidopsis Book: American Society of Plant Biologists, Rockville. 17 p.
[23]  Scofield MA, Lewis W, Schuster SM (1990) Nucleotide sequence of Escherichia coli asnB and deduced amino acid sequence of asparagine synthetase B. Journal Biological Chemistry 265: 12895–12902.
[24]  Nakamura M, Yamada M, Hirota Y, Sugimoto K, Oka A, Takanami M (1981) Nucleotide sequence of the asnA gene coding for asparagine synthetase of E. coli K-12. Nucleic Acids Research 9: 4669–4676. pmid:6117826 doi: 10.1093/nar/9.18.4669
[25]  Reitzer LJ, Magasanik B (1982) Asparagine synthetases of Klebsiella aerogenes: properties and regulation of synthesis. Journal of Bacteriology 151: 1299–1313. pmid:6125499
[26]  Blaise M, Frechin M, Olieric V, Charoon C, Sauter C, Lirber B, et al. (2011) Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases. Journal of Molecular Biology 412: 437–452. doi: 10.1016/j.jmb.2011.07.050. pmid:21820443
[27]  Gowri VS, Ghosh I, Sharma A, Madhubala R (2012) Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major. BMC Genomics 13: 621. doi: 10.1186/1471-2164-13-621. pmid:23151081
[28]  Loureiro I, Faria J, Clayton C, Ribeiro SM, Roy N, Santarém N, et al. (2013) Knockdown of Asparagine Synthetase A Renders Trypanosoma brucei Auxotrophic to Asparagine. Plos Neglected Tropical Diseases 7: e2578. doi: 10.1371/journal.pntd.0002578. pmid:24340117
[29]  Manhas R, Tripathi P, Khan S, Lakshmi BS, Lal SK., Gowri VS, et al. (2014) Identification of functional characterization of a novel bacterial type asparagine synthetase A: a tRNA synthetase paralog from Leishmania donovani. Journal of Biological Chemistry289: 12096–12108. doi: 10.1074/jbc.M114.554642. pmid:24610810
[30]  Boyce JD, Wilkie I, Harper M, Paustian ML, Kapur V, Adler B (2002) Genomic scale analysis of Pasteurella multocida gene expression during growth within the natural chicken host. Infection and Immunity 70: 6871–6879. pmid:12438364 doi: 10.1128/iai.70.12.6871-6879.2002
[31]  Ren H, Liu J (2006) AsnB is involved in natural resistance of Mycobacterium smegmatis to multiple drugs. Antimicrobial Agents and Chemotherapy 50: 250–255. pmid:16377694 doi: 10.1128/aac.50.1.250-255.2006
[32]  Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Molecular Microbiology 48: 77–84. pmid:12657046 doi: 10.1046/j.1365-2958.2003.03425.x
[33]  Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR., Akerley BJ, Sassetti CM (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathogens 7: e1002251. doi: 10.1371/journal.ppat.1002251. pmid:21980284
[34]  Jackson AP (2007) Origins of amino acid transporter loci in trypanosomatid parasites. BMC Evolutionary Biology 7.
[35]  Williams RAM, Westrop GD, Coombs GH (2009) Two pathways for cysteine biosynthesis in Leishmania major. Biochemical Journal 420: 451–462. doi: 10.1042/BJ20082441. pmid:19296828
[36]  Moreira D, Santarém N, Loureiro I, Tavares J, Silva AM, Amorim AM et al. (2012) Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence. Plos Neglected Tropical Diseases 6: e1469. doi: 10.1371/journal.pntd.0001469. pmid:22292094
[37]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. pmid:17846036 doi: 10.1093/bioinformatics/btm404
[38]  Bond CS, Schuttelkopf AW (2009) ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments. Acta Crystallographic D Biological Crystallogaphyr 65: 510–512. doi: 10.1107/s0907444909007835
[39]  Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201. pmid:16301204 doi: 10.1093/bioinformatics/bti770
[40]  Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Research 37: D387–392. doi: 10.1093/nar/gkn750. pmid:18931379
[41]  Peitsch MC, Wells TN, Stampf DR, Sussman JL (1995) The Swiss-3DImage collection and PDB-Browser on the World-Wide Web. Trends Biochemical Science 20: 82–84. doi: 10.1016/s0968-0004(00)88963-x
[42]  Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G (2005) The Genome of the Kinetoplastid Parasite, Leishmania major. Science 309: 436–442. pmid:16020728 doi: 10.1126/science.1112680
[43]  El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, et al. (2005) Comparative genomics of trypanosomatid parasitic protozoa. Science 309: 404–409. pmid:16020724 doi: 10.1126/science.1112181
[44]  Aurrecoechea C, Brestelli J, Brunk BP, Fischer S, Gajria B (2010) EuPathDB: a portal to eukaryotic databases. Nucleic Acid Research 38: D415–419. doi: 10.1093/nar/gkp941
[45]  Sheng S, Kraft JJ, Schuster SM (1993) A specific quantitative colorimetric assay for L-asparagine. Analytical Biochemistry 211: 242–249 pmid:8100404 doi: 10.1006/abio.1993.1264
[46]  Santarém N, Racine G, Silvestre R, Cordeiro-da-Silva A, Ouellette M (2013) Exoproteome dynamics in Leishmania infantum. Journal of Proteomics 84: 106–18. doi: 10.1016/j.jprot.2013.03.012. pmid:23558030
[47]  Silvestre R, Cordeiro-da-Silva A, Santarém N, Vergnes B, Sereno D, Quaissi A (2007) SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. Journal of Immunology 179: 3161–3170. doi: 10.4049/jimmunol.179.5.3161
[48]  Cull B, Godinho JLP, Rodrigues JCF, Frank B, Schurigt U, Williams RAM, et al. (2015) Glycosome turnover in Leishmania major is mediated by autophagy. Autophagy 12: 2143–2157. doi: 10.4161/auto.36438
[49]  Silva AM, Tavares J, Silvestre R, Quaissi A, Coombs GH, Cordeiro-da-Silva A (2012) Characterization of Leishmania infantum thiol-dependent reductase 1 and evaluation of its potential to induce immune protection. Parasite Immunology 34: 345–350. doi: 10.1111/j.1365-3024.2012.01361.x. pmid:22416787
[50]  Gupta R, Kumar V, Kushawaha PK, Tripathi CP, Joshi S, Sahasrabuddhe AA, et al. (2014) Characterization of glycolytic enzymes-rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis. Plos one 9: e86073. doi: 10.1371/journal.pone.0086073. pmid:24475071
[51]  Shih S, Hwang HY, Carter D, Stenberg P, Ullman B (1998) Localization and targeting of the Leishmania donovani Hypoxanthine-Guanine Phosphoribosyltransferase to the glycosome. Journal of Biological Chemistry 273: 1534–1541. pmid:9430693 doi: 10.1074/jbc.273.3.1534
[52]  Cedar H, Schwartz JH (1969) The asparagine synthetase of Escherichia coli. II. Studies on mechanism. Journal of Biological Chemistry 244: 4122–4127. pmid:4895362
[53]  Cedar H, Schwartz JH (1969) The asparagine synthetase of Escherichia coli. I. Biosynthetic role of the enzyme, purification, and characterization of the reaction products. Journal of Biological Chemistry 244: 4112–4121. pmid:4895361
[54]  Larsen TM, Boehlein SK, Schuster SM, Richards NG, Thoden JB, Holden HM, et al. (1999) Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry 38: 16146–16157. pmid:10587437 doi: 10.1021/bi9915768
[55]  Boehlein SK, Richards NG, Schuster SM (1994) Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad. Journal of Biological Chemistry 269: 7450–7457. pmid:7907328
[56]  Duff SM, Qi Q, Reich T, Wu X, Brown T, Crowley JH, et al. (2011) A kinetic comparison of asparagine synthetase isozymes from higher plants. Plant Physiology and Biochemistry 49: 251–256. doi: 10.1016/j.plaphy.2010.12.006. pmid:21276727
[57]  Horowitz B, Meister A (1972) Glutamine-dependent asparagine synthetase from leukemia cells. Chloride dependence, mechanism of action, and inhibition. Journal of Biological Chemistry 247: 6708–6719. pmid:5076775
[58]  Ebikeme C (2007) Amino Acid Transporters & Amino Acid Metabolism in Trypanosoma brucei brucei. Doctor of Philosophy Thesis, Division of Infection & Immunity Faculty of Biomedical & Life Sciences-University of Glasgow.
[59]  Horiguchi M, Koyanagi S, Okamoto A, Suzuki SO, Matsunaga M, and Ohdo S (2012) Stress regulated transcription factor ATF4 promotes neoplastic transformation by suppressing expression of the INK4a/ARF cell senescence factors. Cancer Research 72: 395–401. doi: 10.1158/0008-5472.CAN-11-1891. pmid:22102693
[60]  Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, et al. (2010) The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. The EMBO Journal 29: 2082–2096. doi: 10.1038/emboj.2010.81. pmid:20473272
[61]  Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, et al. (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB Journal 25: 515–525. doi: 10.1096/fj.10-157529. pmid:20952481
[62]  Gosline SJC, Nascimento M, McCall L, Zilberstein D, Thomas DY, Matlashewski G, et al. (2011) Intracellular Eukaryotic Parasites Have a Distinct Unfolded Protein Response. Plos One 6: e19118. doi: 10.1371/journal.pone.0019118. pmid:21559456
[63]  Chow C, Cloutier S, Dumas C, Chou M, Papadopoulou B (2011) Promastigote to amastigote differentiation of Leishmania is markedly delayed in the absence of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation. Cellular Microbiology 13: 1059–1077. doi: 10.1111/j.1462-5822.2011.01602.x. pmid:21624030
[64]  Moraes MCS, Jesus TCL, Hashimoto NN, Dey M, Schwartz KJ, Alves VS, et al. (2007) Novel Membrane-Bound eIF2 Kinase in the Flagellar Pocket of Trypanosoma brucei. Eukaryotic Cell 6: 1979–1991. pmid:17873083 doi: 10.1128/ec.00249-07
[65]  Turco SJ, Spaeth GF, Beverley SM (2001) Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends in Parasitology 5: 223–226. doi: 10.1016/s1471-4922(01)01895-5
[66]  Cruz AK, Titus R, Beverley SM (1993) Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. PNAS 90: 1599–1603. pmid:8381972 doi: 10.1073/pnas.90.4.1599
[67]  Nare B, Hardy LW, Beverley SM (1997) The Roles of Pteridine Reductase 1 and Dihydrofolate Reductase-Thymidylate Synthase in Pteridine Metabolism in the Protozoan Parasite Leishmania major. The Journal of Biological Chemistry 272(21): 13883–13891. pmid:9153248 doi: 10.1074/jbc.272.21.13883
[68]  Wilson ZN, Gilroy CA, Boitz JM, Ullman B, Yates PA (2012) Genetic Dissection of Pyrimidine Biosynthesis and Salvage in Leishmania donovani. Journal of Biological Chemistry, 287(16): 12759–12770. doi: 10.1074/jbc.M112.346502. pmid:22367196
[69]  Avramis VI (2012) Asparaginases: biochemical pharmacology and modes of drug resistance. Anticancer Research 32: 2423–2437. pmid:22753699

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133