全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetic Diversity and Phylogeny of Aedes aegypti, the Main Arbovirus Vector in the Pacific

DOI: 10.1371/journal.pntd.0004374

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The Pacific region is an area unique in the world, composed of thousands of islands with differing climates and environments. The spreading and establishment of the mosquito Aedes aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation of these viruses in the Pacific during the last decade led to an increase of vector control measures by local health authorities. The aim of this study is to analyze the genetic relationships among Ae. aegypti populations in this region. Methodology/Principal Finding We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from 9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsatellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed heterogeneity in the genetic structure between the western, central and eastern Pacific island countries. The microsatellite markers indicate a statistically moderate differentiation (FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated that most of samples are related to Asian and American specimens. Conclusions/Significance Our results suggest a link between human migrations in the Pacific region and the origin of Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation and to the different environmental conditions or ecosystems.

References

[1]  Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Research. 2010;85(2):328–45. doi: http://dx.doi.org/10.1016/j.antiviral.2009.10.008. pmid:19857523
[2]  Singh N, Kiedrzynski T, Lepers C, Benyon EK. Dengue in the Pacific—an update of the current situation. Pacific health dialog. 2005;12(2):111–9. Epub 2008/01/10. pmid:18181502.
[3]  Cao-Lormeau V-M, Musso D. Emerging arboviruses in the Pacific. The Lancet. 384(9954):1571–2. .
[4]  Roth A MA, Lepers C, Hoy D, Duituturaga S, Benyon E, Guillaumot L, Souarès Y. Concurrent outbreaks of dengue, chikungunya and Zika virus infections–an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveill. 2014;19(41):20929. pmid:25345518 doi: 10.2807/1560-7917.es2014.19.41.20929
[5]  Dupont-Rouzeyrol M, O'Connor O, Calvez E, Daures M, John M, Grangeon JP, et al. Co-infection with Zika and dengue viruses in 2 patients, New Caledonia, 2014: Emerg Infect Dis. 2015 Feb;21(2):381–2. doi: 10.3201/eid2102.141553. pmid:25625687
[6]  Belkin JN. The mosquitoes of the South Pacific: Diptera, Culicidae. Berkeley, University of California Press 1962;Vol. 1.
[7]  Rao NP, Rai KS. Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes. Heredity. 1987;59(2):253–8. doi: 10.1038/hdy.1987.120
[8]  Guillaumot L. Arboviruses and their vectors in the Pacific—status report. Pacific health dialog. 2005;12(2):45–52. pmid:18181493.
[9]  Horwood P, Bande G, Dagina R, Guillaumot L, Aaskov J, Pavlin B. The threat of chikungunya in Oceania. Western Pac Surveill Response J. 2013;4(2):8–10. doi: 10.5365/WPSAR.2013.4.2.003. pmid:24015365
[10]  Lounibos LP. Invasions by insect vectors of human disease. Annual Review of Entomology. 2002;47(1):233–66. doi: 10.1146/annurev.ento.47.091201.145206.
[11]  Paupy C, Vazeille-Falcoz M, Mousson L, Rodhain F, Failloux AB. Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzyme differentiation in the mosquito population according to human population density. The American journal of tropical medicine and hygiene. 2000;62(2):217–24. pmid:10813476.
[12]  Rallu J-L. Tendance recentes des migrations dans le Pacifique Sud. In: Espace, population, sociétés. Les population du Pacifique—Populations of the Pacific. 1994–2:201–12. doi: 10.3406/espos.1994.1640.
[13]  Rallu J-L. Démographie des territoire fran?ais d'Océanie. In: Revue fran?aise d'histoire d'outre-mer. La France du Pacifique. 1989;76 (n°284–285, 3e et 4e trimestre 1989):45–62. doi: 10.3406/outre.1989.2742.
[14]  ORSTOM. Atlas de Polynésie Fran?aise. Editions de l'ORSTOM, Paris, France. 1993.
[15]  Chungue E DX, Murgue B. Dengue in French Polynesia: Major features, surveillance, molecular epidemiology and current situation. Pac Health Dialog. 1998;5:154–62.
[16]  Carrington LB, Simmons CP. Human to Mosquito Transmission of Dengue Viruses. Frontiers in Immunology. 2014;5:290. doi: 10.3389/fimmu.2014.00290 pmid:PMC4060056.
[17]  Rosen L, Rozeboom LE, Sweet BH, Sabin AB. The transmission of dengue by Aedes polynesiensis Marks. Am J Trop Med Hyg. 1954;3(5):878–82. pmid:13197723
[18]  Perry WJ. The mosquitoes and mosquito-borne diseases on New Caledonia, an historic account; 1885–1946. The American journal of tropical medicine and hygiene. 1950;30(1):103–14, illust. pmid:15401987.
[19]  Chow CY. Aedes aegypti in the Western Pacific Region. Bulletin of the World Health Organization. 1967;36(4):544–6. pmid:PMC2476414.
[20]  Kuno G. Research on dengue and dengue-like illness in East Asia and the Western Pacific during the First Half of the 20th century. Reviews in Medical Virology. 2007;17(5):327–41. doi: 10.1002/rmv.545 pmid:WOS:000249457300004.
[21]  Dupont-Rouzeyrol M, Caro V, Guillaumot L, Vazeille M, D'Ortenzio E, Thiberge JM, et al. Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific Region). Vector Borne Zoonotic Dis. 2012;12(12):1036–41. Epub 2012/11/22. doi: 10.1089/vbz.2011.0937 pmid:23167500.
[22]  Lardeux F, Riviere F, Sechan Y, Loncke S. Control of the Aedes vectors of the dengue viruses and Wuchereria bancrofti: the French Polynesian experience. Ann Trop Med Parasitol. 2002;96(2):S105–16. doi: 10.1179/000349802125002455
[23]  Nhan TX, Claverie A, Roche C, Teissier A, Colleuil M, Baudet JM, et al. Chikungunya virus imported into French polynesia, 2014: Emerg Infect Dis. 2014 Oct;20(10):1773–4. doi: 10.3201/eid2010.141060. pmid:25271852
[24]  Raju AK. Community Mobilization in Aedes aegypti Control Programme by Source Reduction in Peri-Urban District of Lautoka, Viti Levu,Fiji Islands. 2003;Dengue Bulletin(27):149–55.
[25]  Failloux AB, Darius H, Pasteur N. Genetic differentiation of Aedes aegypti, the vector of dengue virus in French Polynesia. Journal of the American Mosquito Control Association. 1995;11(4):457–62. pmid:8825508.
[26]  Slotman M, Kelly N, Harrington C, Kitthawee S, Jones W, Scott T, et al. Polymorphic microsatellite markers for studies of Aedes aegypti (Diptera: Culicidae), the vector of dengue and yellow fever. Mol Ecol Notes. 2007;7:168–71. doi: 10.1111/j.1471-8286.2006.01533.x.
[27]  Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, et al. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proceedings of the Royal Society B: Biological Sciences. 2011;278(1717):2446–54. doi: 10.1098/rspb.2010.2469. pmid:21227970
[28]  Lovin DD, Washington KO, deBruyn B, Hemme RR, Mori A, Epstein SR, et al. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti. BMC Genomics. 2009;10(590):1471–2164. doi: 10.1186/1471-2164-10-590
[29]  Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28(19):2537–9. doi: 10.1093/bioinformatics/bts460 pmid:PMC3463245.
[30]  Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes. 2004;4(3):535–8. doi: 10.1111/j.1471-8286.2004.00684.x.
[31]  El Mousadik A, Petit RJ. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theoret Appl Genetics. 1996;92(7):832–9. doi: 10.1007/bf00221895.
[32]  Goudet J. FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. Journal of Heredity. 1995;86(6):485–6.
[33]  Belkhir K BP, Chikhi L, Raufaste N and Bonhomme F. (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).
[34]  Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online. 2005;1:47–50. pmid:PMC2658868.
[35]  Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;155(2):945–59. pmid:10835412
[36]  Earl D, vonHoldt B. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour. 2012;4(2):359–61. doi: 10.1007/s12686-011-9548-7.
[37]  Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology. 2005;14(8):2611–20. doi: 10.1111/j.1365-294X.2005.02553.x. pmid:15969739
[38]  Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;12(10):1755–0998. doi: 10.1111/1755-0998.12387
[39]  Jensen JL, Bohonak A.J., and Kelley S.T.. Isolation by distance, web service. BMC Genetics 6: 13 v323 2005. pmid:15760479
[40]  Paupy C, Le Goff G, Brengues C, Guerra M, Revollo J, Barja Simon Z, et al. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infection, Genetics and Evolution. 2012;12(6):1260–9. doi: http://dx.doi.org/10.1016/j.meegid.2012.04.012. pmid:22522103
[41]  da Costa-da-Silva AL, Capurro ML, Bracco JE. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Memórias do Instituto Oswaldo Cruz. 2005;100:539–44. pmid:16302064 doi: 10.1590/s0074-02762005000600007
[42]  Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999;41:95–8.
[43]  Tajima F. The Effect of Change in Population Size on DNA Polymorphism. Genetics. 1989;123(3):597–601. pmid:PMC1203832.
[44]  Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics. 1993;133(3):693–709. pmid:8454210
[45]  Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147(2):915–25. pmid:9335623
[46]  Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19(18):2496–7. pmid:14668244 doi: 10.1093/bioinformatics/btg359
[47]  Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48. pmid:10331250 doi: 10.1093/oxfordjournals.molbev.a026036
[48]  Fluxus Technology ltd 2004–2015 NETWORK 4.6.1.3. .
[49]  Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4. pmid:12912839 doi: 10.1093/bioinformatics/btg180
[50]  Perrier X, Flori A., Bonnot F. Data analysis methods. Hamon P, Seguin M, Perrier X, Glaszmann J C Ed, Genetic diversity of cultivated tropical plants. 2003;Enfield, Science Publishers. Montpellier.: 43–76.
[51]  Monteiro FA, Schama R, Martins AJ, Gloria-Soria A, Brown JE, Powell JR. Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program. PLoS Negl Trop Dis. 2014;8(9):e3167. doi: 10.1371/journal.pntd.0003167. pmid:25233218
[52]  Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti—a review. Mem Inst Oswaldo Cruz. 2013;1:11–7. doi: 10.1590/0074-0276130395
[53]  Shineberg D. They came for Sandalwood. A study of the sandalwood trade in the South-West Pacific, 1830–1865. 1967. doi: 10.1525/aa.1969.71.3.02a00600
[54]  IRD. Atlas de la Nouvelle-Calédonie IRD éditions, Marseille, France. 2012.
[55]  Survey. NZDoLa. Atlas of the South Pacific. Wellington New Zealand Government Printing Office. 1986.
[56]  InstitutPasteurdeNouvelle-Calédonie. IPNC—Rapport technique Année 2003 .
[57]  Laille M, Fauran P, Rodhain F. [The presence of Aedes (Stegomyia) albopictus in the Fiji Islands]. Bull Soc Pathol Exot. 1990;83(3):394–8. pmid:2208470
[58]  Guillaumot L, Ofanoa R, Swillen L, Singh N, Bossin HC, Schaffner F. Distribution of Aedes albopictus (Diptera, Culicidae) in southwestern Pacific countries, with a first report from the Kingdom of Tonga. Parasit Vectors. 2012;5(247):1756–3305. doi: 10.1186/1756-3305-5-247
[59]  Guillaumot L. Entomological survey on Efate—Vanuatu to assess the statut of the mosquito Aedes albopictus. 2013;Doc. n°41/2013-IPNC-URE-EM/LG/DG, 7th of February 2013.
[60]  Roth A, Mercier A, Lepers C, Hoy D, Duituturaga S, Benyon E, et al. Concurrent outbreaks of dengue, chikungunya and Zika virus infections—an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveill. 2014;19(41):20929. pmid:25345518 doi: 10.2807/1560-7917.es2014.19.41.20929
[61]  Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, et al. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genetics. 2009;10(1):11. doi: 10.1186/1471-2156-10-11.
[62]  Paduan Kdos S, Ribolla PE. Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J Med Entomol. 2008;45(1):59–67. pmid:18283943 doi: 10.1093/jmedent/45.1.59
[63]  Paupy C, Brengues C, Ndiath O, Toty C, Hervé J-P, Simard F. Morphological and genetic variability within Aedes aegypti in Niakhar, Senegal. Infection, Genetics and Evolution. 2010;10(4):473–80. doi: http://dx.doi.org/10.1016/j.meegid.2010.03.001. pmid:20223297
[64]  Marcombe S, Paris M, Paupy C, Bringuier C, Yebakima A, Chandre F, et al. Insecticide-driven patterns of genetic variation in the dengue vector Aedes aegypti in Martinique Island. PLoS One. 2013;8(10). doi: 10.1371/journal.pone.0077857
[65]  Rageau J. La répartition géographique des moustiques en Nouvelle-Calédonie et dépendances. CPS. 1958;Document technique n°117.
[66]  InstitutPasteurdeNouvelle-Calédonie. IPNC—Rapport technique Année 2003 .
[67]  InstitutPasteurdeNouvelle-Calédonie. IPNC—Rapport technique Année 2003 .
[68]  ISEE. Bilan économique et social 2014—Echanges extérieurs Institut de la Statistique et des Etudes Economiques Nouvelle-Calédonie. 2014.
[69]  Huerre M, Camprasse MA, Laille M. Problèmes posés par les épidémies de dengue. L'exemple des foyers d'Océanie. Situation mondiale actuelle et dans les DOM-TOM. Médecine et Maladies Infectieuses. 1995;25, Supplement 7(0):688–95. .
[70]  Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, Jarman RG, et al. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol. 2009;9(160):1471–2148. doi: 10.1186/1471-2148-9-160
[71]  Failloux AB, Vazeille M, Rodhain F. Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. J Mol Evol. 2002;55(6):653–63. pmid:12486524 doi: 10.1007/s00239-002-2360-y
[72]  Tabachnick WJ. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int J Environ Res Public Health. 2013;10(1):249–77. doi: 10.3390/ijerph10010249. pmid:23343982
[73]  Tabachnick W. Genetics of Insect Vector Competence for Arboviruses. In: Harris K, editor. Advances in Disease Vector Research. Advances in Disease Vector Research. 10: Springer New York; 1994. p. 93–108.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133