全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Multilayer Network Approach for Guiding Drug Repositioning in Neglected Diseases

DOI: 10.1371/journal.pntd.0004300

Full-Text   Cite this paper   Add to My Lib

Abstract:

Drug development for neglected diseases has been historically hampered due to lack of market incentives. The advent of public domain resources containing chemical information from high throughput screenings is changing the landscape of drug discovery for these diseases. In this work we took advantage of data from extensively studied organisms like human, mouse, E. coli and yeast, among others, to develop a novel integrative network model to prioritize and identify candidate drug targets in neglected pathogen proteomes, and bioactive drug-like molecules. We modeled genomic (proteins) and chemical (bioactive compounds) data as a multilayer weighted network graph that takes advantage of bioactivity data across 221 species, chemical similarities between 1.7 105 compounds and several functional relations among 1.67 105 proteins. These relations comprised orthology, sharing of protein domains, and shared participation in defined biochemical pathways. We showcase the application of this network graph to the problem of prioritization of new candidate targets, based on the information available in the graph for known compound-target associations. We validated this strategy by performing a cross validation procedure for known mouse and Trypanosoma cruzi targets and showed that our approach outperforms classic alignment-based approaches. Moreover, our model provides additional flexibility as two different network definitions could be considered, finding in both cases qualitatively different but sensible candidate targets. We also showcase the application of the network to suggest targets for orphan compounds that are active against Plasmodium falciparum in high-throughput screens. In this case our approach provided a reduced prioritization list of target proteins for the query molecules and showed the ability to propose new testable hypotheses for each compound. Moreover, we found that some predictions highlighted by our network model were supported by independent experimental validations as found post-facto in the literature.

References

[1]  Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, et al. (2002) Drug development for neglected diseases: A deficient market and a public-health policy failure. Lancet 359: 2188–2194. pmid:12090998 doi: 10.1016/s0140-6736(02)09096-7
[2]  Hotez PJP, Molyneux DDH, Fenwick A, Kumaresan J, Sachs SE, et al. (2007) Control of neglected tropical diseases. N Engl J Med 357: 1018–1027. . pmid:17804846
[3]  Buscaglia CA, Kissinger JC, Agüero F (2015) Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet 31: 539–555. . Accessed 7 October 2015. doi: 10.1016/j.tig.2015.06.002. pmid:26450337
[4]  Wyatt PG, Gilbert IH, Read KD, Fairlamb AH (2011) Target validation: linking target and chemical properties to desired product profile. Curr Top Med Chem 11: 1275–1283. pmid:21401506 doi: 10.2174/156802611795429185
[5]  DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Heal Econ 22: 151–185. .
[6]  Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3: 711–715. . pmid:15286737
[7]  Robertson SA, Renslo AR (2011) Drug discovery for neglected tropical diseases at the Sandler Center. Futur Med Chem 3: 1279–1288. .
[8]  Kesselheim AS, Darrow JJ (2014) Drug development and FDA approval, 1938–2013. N Engl J Med 370: e39. . Accessed 27 April 2015. doi: 10.1056/NEJMp1402114. pmid:24963591
[9]  Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3: 673–683. . pmid:15286734
[10]  Chong CR, Sullivan DJ Jr (2007) New uses for old drugs. Nature 448: 645–646. . pmid:17687303
[11]  Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34: 267–272. doi: http://dx.doi.org/10.1016/j.tips.2013.03.004. pmid:23582281
[12]  Teo SK, Resztak KE, Scheffler MA, Kook KA, Zeldis JB, et al. (2002) Thalidomide in the treatment of leprosy. Microbes Infect 4: 1193–1202. pmid:12361920 doi: 10.1016/s1286-4579(02)01645-3
[13]  Haupt VJ, Schroeder M (2011) Old friends in new guise: repositioning of known drugs with structural bioinformatics. Br Bioinform 12: 312–326. .
[14]  Pollastri MP, Campbell RK (2011) Target repurposing for neglected diseases. Futur Med Chem 3: 1307–1315. .
[15]  Jin G, Wong STC (2014) Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov Today 19: 637–644. . doi: 10.1016/j.drudis.2013.11.005. pmid:24239728
[16]  Campillos M, Kuhn M, Gavin A-C, Jensen LJ, Bork P (2008) Drug target identification using side-effect similarity. Science (80-) 321: 263–266. . doi: 10.1126/science.1158140. pmid:18621671
[17]  Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, et al. (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25: 197–206. . pmid:17287757
[18]  Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, et al. (2009) Predicting new molecular targets for known drugs. Nature 462: 175–181. . doi: 10.1038/nature08506. pmid:19881490
[19]  Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, et al. (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A 107: 14621–14626. . doi: 10.1073/pnas.1000138107. pmid:20679242
[20]  Meslamani J, Bhajun R, Martz F, Rognan D (2013) Computational profiling of bioactive compounds using a target-dependent composite workflow. J Chem Inf Model 53: 2322–2333. . doi: 10.1021/ci400303n. pmid:23941602
[21]  Parkkinen JA, Kaski S (2014) Probabilistic drug connectivity mapping. BMC Bioinformatics 15: 113. . doi: 10.1186/1471-2105-15-113. pmid:24742351
[22]  Iskar M, Zeller G, Blattmann P, Campillos M, Kuhn M, et al. (2013) Characterization of drug-induced transcriptional modules: towards drug repositioning and functional understanding. Mol Syst Biol 9: 662. doi: 10.1038/msb.2013.20. pmid:23632384
[23]  Emig D, Ivliev A, Pustovalova O, Lancashire L, Bureeva S, et al. (2013) Drug target prediction and repositioning using an integrated network-based approach. PLoS One 8: e60618. . doi: 10.1371/journal.pone.0060618. pmid:23593264
[24]  Lo Y-C, Senese S, Li C-M, Hu Q, Huang Y, et al. (2015) Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens. PLoS Comput Biol 11: e1004153. . Accessed 1 April 2015. doi: 10.1371/journal.pcbi.1004153. pmid:25826798
[25]  Kruger FA, Overington JP (2012) Global analysis of small molecule binding to related protein targets. PLoS Comput Biol 8: e1002333. . doi: 10.1371/journal.pcbi.1002333. pmid:22253582
[26]  Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, et al. (2008) Genomic-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7: 900–907. . doi: 10.1038/nrd2684. pmid:18927591
[27]  Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, et al. (2010) Identification of attractive drug targets in neglected-disease pathogens using an [i]in silico[/i] approach. PLoS Negl Trop Dis 4: e804. . Accessed 4 October 2010. doi: 10.1371/journal.pntd.0000804. pmid:20808766
[28]  Magari?os MP, Carmona SJ, Crowther GJ, Ralph SA, Roos DS, et al. (2012) TDR Targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res 40: D1118–D1127. . doi: 10.1093/nar/gkr1053. pmid:22116064
[29]  Gamo F-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, et al. (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465: 305–310. . Accessed 22 July 2010. doi: 10.1038/nature09107. pmid:20485427
[30]  Guiguemde WA, Shelat AA, Bouck D, Duffy S, Crowther GJ, et al. (2010) Chemical genetics of Plasmodium falciparum. Nature 465: 311–315. . doi: 10.1038/nature09099. pmid:20485428
[31]  Spangenberg T, Burrows JN, Kowalczyk P, McDonald S, Wells TNC, et al. (2013) The open access malaria box: a drug discovery catalyst for neglected diseases. PLoS One 8: e62906. . doi: 10.1371/journal.pone.0062906. pmid:23798988
[32]  Cheng F, Liu C, Jiang J, Lu W, Li W, et al. (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8: e1002503. . doi: 10.1371/journal.pcbi.1002503. pmid:22589709
[33]  Alaimo S, Pulvirenti A, Giugno R, Ferro A (2013) Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 29: 2004–2008. . doi: 10.1093/bioinformatics/btt307. pmid:23720490
[34]  Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26: 178–182. . pmid:15808341
[35]  Harrold JM, Ramanathan M, Mager DE (2013) Network-based approaches in drug discovery and early development. Clin Pharmacol Ther 94: 651–658. . Accessed 5 May 2015. doi: 10.1038/clpt.2013.176. pmid:24025802
[36]  Yabuuchi H, Niijima S, Takematsu H, Ida T, Hirokawa T, et al. (2011) Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol Syst Biol 7: 472. . Accessed 5 May 2015. doi: 10.1038/msb.2011.5. pmid:21364574
[37]  Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26: i246–i254. . Accessed 31 March 2015. doi: 10.1093/bioinformatics/btq176. pmid:20529913
[38]  van Laarhoven T, Marchiori E (2013) Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile. PLoS One 8: e66952. . Accessed 5 May 2015. pmid:23840562
[39]  Martínez-Jiménez F, Marti-Renom MA (2015) Ligand-Target Prediction by Structural Network Biology Using nAnnoLyze. PLOS Comput Biol 11: e1004157. . Accessed 30 March 2015. doi: 10.1371/journal.pcbi.1004157. pmid:25816344
[40]  Yamanishi Y, Kotera M, Moriya Y, Sawada R, Kanehisa M, et al. (2014) DINIES: drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res 42: W39–W45. . Accessed 21 July 2015. doi: 10.1093/nar/gku337. pmid:24838565
[41]  Jones P, Binns D, Chang H-Y, Fraser M, Li W, et al. (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30: 1236–1240. . Accessed 13 July 2014. doi: 10.1093/bioinformatics/btu031. pmid:24451626
[42]  Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109–D114. . doi: 10.1093/nar/gkr988. pmid:22080510
[43]  Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS (2006) OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34: D363–D368. . pmid:16381887
[44]  Fischer S, Brunk BP, Chen F, Gao X, Harb OS, et al. (2011) Using OrthoMCL to Assign Proteins to OrthoMCL-DB Groups or to Cluster Proteomes Into New Ortholog Groups. Curr Protoc Bioinforma Chapter 6: Unit6.12. .
[45]  Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, et al. (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40: D1100–D1107. . doi: 10.1093/nar/gkr777. pmid:21948594
[46]  Haider N (2010) Functionality pattern matching as an efficient complementary structure/reaction search tool: an open-source approach. Molecules 15: 5079–5092. . doi: 10.3390/molecules15085079. pmid:20714286
[47]  Willett P, Barnard JM, Downs GM (1998) Chemical Similarity Searching. J Chem Inf Model 38: 983–996. . Accessed 11 September 2015.
[48]  Baldi P, Nasr R (2010) When is chemical similarity significant? the statistical distribution of chemical similarity scores and its extreme values. J Chem Inf Model 50: 1205–1222. doi: 10.1021/ci100010v. pmid:20540577
[49]  Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45: 4350–4358. pmid:12213076 doi: 10.1021/jm020155c
[50]  Gagaring K, Borboa R, Francek C, Chen Z, Buenviaje J, et al. (2010) Novartis-GNF Malaria Box. .
[51]  Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, et al. (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42: D1091–D1097. . Accessed 20 July 2014. doi: 10.1093/nar/gkt1068. pmid:24203711
[52]  Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. (2014) Pfam: The protein families database. Nucleic Acids Res 42. doi: 10.1093/nar/gkt1223
[53]  Li L, Stoeckert CJ, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13: 2178–2189. . pmid:12952885
[54]  Chen F, Mackey AJ, Vermunt JK, Roos DS (2007) Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One 2: e383. . pmid:17440619
[55]  Faust K (1997) Centrality in affiliation networks. Soc Networks 19: 157–191. .
[56]  Newman M (2010) Networks: An Introduction. 1st Editio. Oxford: Oxford University Press. 720 p.
[57]  Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132: 185–219. pmid:10547837 doi: 10.1385/1-59259-192-2:185
[58]  McClish DK (1989) Analyzing a portion of the ROC curve. Med Decis Making 9: 190–195. . Accessed 21 October 2014. pmid:2668680
[59]  Gillis J, Pavlidis P (2011) The role of indirect connections in gene networks in predicting function. Bioinformatics 27: 1860–1866. . doi: 10.1093/bioinformatics/btr288. pmid:21551147
[60]  Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M (2005) Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21 Suppl 1: i302–i310. . pmid:15961472
[61]  Kissinger JC (2006) A tale of three genomes: the kinetoplastids have arrived. Trends Parasitol 22: 240–243. pmid:16635586 doi: 10.1016/j.pt.2006.04.002
[62]  Hanks S, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9: 576–596. . Accessed 10 April 2015. pmid:7768349
[63]  Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacology. Nat Rev Cancer 10: 130–137. . Accessed 5 November 2015. doi: 10.1038/nrc2787. pmid:20094047
[64]  Bao Y, Weiss LM, Braunstein VL, Huang H (2008) Role of protein kinase A in Trypanosoma cruzi. Infect Immun 76: 4757–4763. . Accessed 17 December 2014. doi: 10.1128/IAI.00527-08. pmid:18694966
[65]  Bao Y, Weiss LM, Ma YF, Kahn S, Huang H (2010) Protein kinase A catalytic subunit interacts and phosphorylates members of trans-sialidase super-family in Trypanosoma cruzi. Microbes Infect 12: 716–726. . Accessed 17 December 2014. doi: 10.1016/j.micinf.2010.04.014. pmid:20466066
[66]  Allocco JJ, Donald R, Zhong T, Lee A, Tang YS, et al. (2006) Inhibitors of casein kinase 1 block the growth of Leishmania major promastigotes in vitro. Int J Parasitol 36: 1249–1259. . Accessed 17 December 2014. pmid:16890941
[67]  Marhadour S, Marchand P, Pagniez F, Bazin M-A, Picot C, et al. (2012) Synthesis and biological evaluation of 2,3-diarylimidazo[1,2-a]pyridines as antileishmanial agents. Eur J Med Chem 58: 543–556. . Accessed 17 December 2014. doi: 10.1016/j.ejmech.2012.10.048. pmid:23164660
[68]  Spadafora C, Repetto Y, Torres C, Pino L, Robello C, et al. Two casein kinase 1 isoforms are differentially expressed in Trypanosoma cruzi. Mol Biochem Parasitol 124: 23–36. . Accessed 17 December 2014. pmid:12387847
[69]  Knockaert M, Gray N, Damiens E, Chang YT, Grellier P, et al. (2000) Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem Biol 7: 411–422. . Accessed 17 December 2014. pmid:10873834
[70]  Bao Y, Weiss LM, Ma YF, Lisanti MP, Tanowitz HB, et al. (2010) Molecular cloning and characterization of mitogen-activated protein kinase 2 in Trypanosoma cruzi. Cell Cycle 9: 2888–2896. . Accessed 17 December 2014. pmid:20603604
[71]  Patterson RL, Boehning D, Snyder SH (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73: 437–465. pmid:15189149 doi: 10.1146/annurev.biochem.73.071403.161303
[72]  Huang G, Bartlett PJ, Thomas AP, Moreno SNJ, Docampo R (2013) Acidocalcisomes of Trypanosoma brucei have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. Proc Natl Acad Sci U S A 110: 1887–1892. . doi: 10.1073/pnas.1216955110. pmid:23319604
[73]  Hashimoto M, Enomoto M, Morales J, Kurebayashi N, Sakurai T, et al. (2013) Inositol 1,4,5-trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist Trypanosoma cruzi. Mol Microbiol 87: 1133–1150. . doi: 10.1111/mmi.12155. pmid:23320762
[74]  Bahia D, Oliveira LM, Lima FM, Oliveira P, Silveira JF da, et al. (2009) The TryPIKinome of five human pathogenic trypanosomatids: Trypanosoma brucei,} rypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum—new tools for designing specific inhibitors. Biochem Biophys Res Commun 390: 963–970. doi: http://dx.doi.org/10.1016/j.bbrc.2009.10.086. pmid:19852933
[75]  Sutherlin DP, Bao L, Berry M, Castanedo G, Chuckowree I, et al. (2011) Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J Med Chem 54: 7579–7587. . doi: 10.1021/jm2009327. pmid:21981714
[76]  Woolsey AM, Sunwoo L, Petersen CA, Brachmann SM, Cantley LC, et al. (2003) Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. J Cell Sci 116: 3611–3622. d pmid:12876217 doi: 10.1242/jcs.00666
[77]  Andrade LO, Andrews NW (2004) Lysosomal fusion is essential for the retention of Trypanosoma cruzi inside host cells. J Exp Med 200: 1135–1143. pmid:15520245 doi: 10.1084/jem.20041408
[78]  Schoijet AC, Miranda K, Girard-Dias W, de Souza W, Flawiá MM, et al. (2008) A Trypanosoma cruzi phosphatidylinositol 3-kinase (TcVps34) is involved in osmoregulation and receptor-mediated endocytosis. J Biol Chem 283: 31541–31550. . doi: 10.1074/jbc.M801367200. pmid:18801733
[79]  Hashimoto M, Morales J, Fukai Y, Suzuki S, Takamiya S, et al. (2012) Critical importance of the de novo pyrimidine biosynthesis pathway for Trypanosoma cruzi growth in the mammalian host cell cytoplasm. Biochem Biophys Res Commun 417: 1002–1006. doi: 10.1016/j.bbrc.2011.12.073. pmid:22209850
[80]  Cosentino RO, Agüero F (2014) Genetic Profiling of the Isoprenoid and Sterol Biosynthesis Pathway Genes of Trypanosoma cruzi. PLoS One 9: e96762. . doi: 10.1371/journal.pone.0096762. pmid:24828104
[81]  Lepesheva GI, Zaitseva NG, Nes WD, Zhou W, Arase M, et al. (2006) CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B’ helix defines substrate preferences of sterol 14alpha-demethylase. J Biol Chem 281: 3577–3585. . pmid:16321980
[82]  Lepesheva GI, Park H-W, Hargrove TY, Vanhollebeke B, Wawrzak Z, et al. (2010) Crystal structures of Trypanosoma brucei sterol 14alpha-demethylase and implications for selective treatment of human infections. J Biol Chem 285: 1773–1780. . doi: 10.1074/jbc.M109.067470. pmid:19923211
[83]  Andrade-Neto VV, Matos-Guedes HL de, Gomes DC de O, Canto-Cavalheiro MM do, Rossi-Bergmann B, et al. (2012) The stepwise selection for ketoconazole resistance induces upregulation of C14-demethylase (CYP51) in Leishmania amazonensis. Mem Inst Oswaldo Cruz 107: 416–419. pmid:22510839 doi: 10.1590/s0074-02762012000300018
[84]  Tate EW, Bell AS, Rackham MD, Wright MH (2014) N-Myristoyltransferase as a potential drug target in malaria and leishmaniasis. Parasitology 141: 37–49. . doi: 10.1017/S0031182013000450. pmid:23611109
[85]  Sheng C, Zhu J, Zhang W, Zhang M, Ji H, et al. (2007) 3D-QSAR and molecular docking studies on benzothiazole derivatives as Candida albicans N-myristoyltransferase inhibitors. Eur J Med Chem 42: 477–486. doi: http://dx.doi.org/10.1016/j.ejmech.2006.11.001. pmid:17349719
[86]  Rackham MD, Brannigan JA, Rangachari K, Meister S, Wilkinson AJ, et al. (2014) Design and synthesis of high affinity inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferases directed by ligand efficiency dependent lipophilicity (LELP). J Med Chem 57: 2773–2788. . doi: 10.1021/jm500066b. pmid:24641010
[87]  Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, et al. (2014) Validation of N -myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat Chem 6: 112–121. . doi: 10.1038/nchem.1830. pmid:24451586
[88]  Bowyer PW, Gunaratne RS, Grainger M, Withers-Martinez C, Wickramsinghe SR, et al. (2007) Molecules incorporating a benzothiazole core scaffold inhibit the N-myristoyltransferase of Plasmodium falciparum. Biochem J 408: 173–180. . pmid:17714074
[89]  Calí P, Naerum L, Mukhija S, Hjelmencrantz A (2004) Isoxazole-3-hydroxamic acid derivatives as peptide deformylase inhibitors and potential antibacterial agents. Bioorg Med Chem Lett 14: 5997–6000. . Accessed 17 December 2014. pmid:15546716
[90]  Wiesner J, Sanderbrand S, Altincicek B, Beck E, Jomaa H (2001) Seeking new targets for antiparasitic agents. Trends Parasitol 17: 7–8. . Accessed 20 October 2014.
[91]  Hynes JB (1970) Hydroxylamine derivatives as potential antimalarial agents. 1. Hydroxamic acids. J Med Chem 13: 1235–1237. . Accessed 29 April 2015. pmid:5479878
[92]  Gupta S, editor (2013) Hydroxamic Acids: A Unique Family of Chemicals with Multiple Biological Activities. Berlin: Springer Science & Business Media. 312 p.
[93]  McGowan S (2013) Sitagliptin does not inhibit the M1 alanyl aminopeptidase from Plasmodium falciparum. Bioinformation 9: 661–662. . Accessed 18 December 2014. doi: 10.6026/97320630009661. pmid:23930016
[94]  Skinner-Adams TS, Stack CM, Trenholme KR, Brown CL, Grembecka J, et al. (2010) Plasmodium falciparum neutral aminopeptidases: new targets for anti-malarials. Trends Biochem Sci 35: 53–61. . Accessed 27 August 2015. doi: 10.1016/j.tibs.2009.08.004. pmid:19796954
[95]  Flipo M, Florent I, Grellier P, Sergheraert C, Deprez-Poulain R (2003) Design, synthesis and antimalarial activity of novel, quinoline-Based, zinc metallo-aminopeptidase inhibitors. Bioorg Med Chem Lett 13: 2659–2662. . Accessed 27 April 2015. pmid:12873488
[96]  Harbut MB, Velmourougane G, Dalal S, Reiss G, Whisstock JC, et al. (2011) Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc Natl Acad Sci U S A 108: E526–E534. . Accessed 18 December 2014. doi: 10.1073/pnas.1105601108. pmid:21844374
[97]  Kannan Sivaraman K, Paiardini A, Sieńczyk M, Ruggeri C, Oellig CA, et al. (2013) Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum. J Med Chem 56: 5213–5217. . Accessed 18 December 2014. doi: 10.1021/jm4005972. pmid:23713488
[98]  Poreba M, McGowan S, Skinner-Adams TS, Trenholme KR, Gardiner DL, et al. (2012) Fingerprinting the substrate specificity of M1 and M17 aminopeptidases of human malaria, Plasmodium falciparum. PLoS One 7: e31938. . Accessed 27 August 2015. doi: 10.1371/journal.pone.0031938. pmid:22359643
[99]  Belluti F, Perozzo R, Lauciello L, Colizzi F, Kostrewa D, et al. (2013) Design, synthesis, and biological and crystallographic evaluation of novel inhibitors of Plasmodium falciparum enoyl-ACP-reductase (PfFabI). J Med Chem 56: 7516–7526. . Accessed 18 December 2014. doi: 10.1021/jm400637m. pmid:24063369
[100]  Heerding DA, Chan G, DeWolf WE, Fosberry AP, Janson CA, et al. (2001) 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg Med Chem Lett 11: 2061–2065. . Accessed 15 April 2015. pmid:11514139
[101]  am Ende CW, Knudson SE, Liu N, Childs J, Sullivan TJ, et al. (2008) Synthesis and in vitro antimycobacterial activity of B-ring modified diaryl ether InhA inhibitors. Bioorg Med Chem Lett 18: 3029–3033. . Accessed 27 April 2015. doi: 10.1016/j.bmcl.2008.04.038. pmid:18457948
[102]  Samal RP, Khedkar VM, Pissurlenkar RRS, Bwalya AG, Tasdemir D, et al. (2013) Design, synthesis, structural characterization by IR, (1) H, (13) C, (15) N, 2D-NMR, X-ray diffraction and evaluation of a new class of phenylaminoacetic acid benzylidene hydrazines as pfENR inhibitors. Chem Biol Drug Des 81: 715–729. . Accessed 18 December 2014. doi: 10.1111/cbdd.12118. pmid:23398677
[103]  Schrader FC, Glinca S, Sattler JM, Dahse H-M, Afanador GA, et al. (2013) Novel type II fatty acid biosynthesis (FAS II) inhibitors as multistage antimalarial agents. ChemMedChem 8: 442–461. . Accessed 18 December 2014. doi: 10.1002/cmdc.201200407. pmid:23341167
[104]  Muhammad A, Anis I, Ali Z, Awadelkarim S, Khan A, et al. (2012) Methylenebissantin: a rare methylene-bridged bisflavonoid from Dodonaea viscosa which inhibits Plasmodium falciparum enoyl-ACP reductase. Bioorg Med Chem Lett 22: 610–612. . Accessed 18 December 2014. doi: 10.1016/j.bmcl.2011.10.072. pmid:22082562
[105]  Muench SP, Stec J, Zhou Y, Afanador GA, McPhillie MJ, et al. (2013) Development of a triclosan scaffold which allows for adaptations on both the A- and B-ring for transport peptides. Bioorg Med Chem Lett 23: 3551–3555. . Accessed 18 December 2014. doi: 10.1016/j.bmcl.2013.04.035. pmid:23664871
[106]  Guggisberg AM, Amthor RE, Odom AR (2014) Isoprenoid biosynthesis in Plasmodium falciparum. Eukaryot Cell 13: 1348–1359. . Accessed 25 August 2015. doi: 10.1128/EC.00160-14. pmid:25217461
[107]  Lindner SE, Sartain MJ, Hayes K, Harupa A, Moritz RL, et al. (2014) Enzymes involved in plastid-targeted phosphatidic acid synthesis are essential for P lasmodium yoelii liver-stage development. Mol Microbiol 91: 679–693. . Accessed 18 March 2015. doi: 10.1111/mmi.12485. pmid:24330260
[108]  Kumar S, Chaudhary K, Foster JM, Novelli JF, Zhang Y, et al. (2007) Mining predicted essential genes of brugia malayi for nematode drug targets. PLoS One 2: e1189. . pmid:18000556
[109]  Chen Y, Xu R (2015) Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery. BMC Genomics 16 Suppl 7: S9. . Accessed 27 August 2015. doi: 10.1186/1471-2164-16-S7-S9. pmid:26099491
[110]  Morel C, Ibarz G, Oiry C, Carnazzi E, Bergé G, et al. (2005) Cross-interactions of two p38 mitogen-activated protein (MAP) kinase inhibitors and two cholecystokinin (CCK) receptor antagonists with the CCK1 receptor and p38 MAP kinase. J Biol Chem 280: 21384–21393. . Accessed 5 November 2015. pmid:15772081
[111]  Rix U, Hantschel O, Dürnberger G, Remsing Rix LL, Planyavsky M, et al. (2007) Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood 110: 4055–4063. . Accessed 5 November 2015. pmid:17720881
[112]  Ross-Macdonald P, de Silva H, Guo Q, Xiao H, Hung C-Y, et al. (2008) Identification of a nonkinase target mediating cytotoxicity of novel kinase inhibitors. Mol Cancer Ther 7: 3490–3498. . Accessed 5 November 2015. doi: 10.1158/1535-7163.MCT-08-0826. pmid:19001433
[113]  Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, et al. (2005) An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol 3: e128. . Accessed 5 November 2015. pmid:15799708
[114]  Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, et al. (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25: 1035–1044. . Accessed 14 August 2015. pmid:17721511
[115]  Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: Challenges and Opportunities in Drug Discovery. J Med Chem 57: 7874–7887. . Accessed 12 March 2015. doi: 10.1021/jm5006463. pmid:24946140
[116]  Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, et al. (2009) Predicting new molecular targets for known drugs. Nature 462: 175–181. . Accessed 5 April 2015. doi: 10.1038/nature08506. pmid:19881490
[117]  Kaiser M, M?ser P, Tadoori LP, Ioset J-R, Brun R (2015) Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLoS One 10: e0135556. . Accessed 31 August 2015. doi: 10.1371/journal.pone.0135556. pmid:26270335
[118]  Kodadek T (2010) Rethinking screening. Nat Chem Biol 6: 162–165. . Accessed 20 October 2014. pmid:20154660
[119]  Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J, et al. (2015) The promise and peril of chemical probes. Nat Chem Biol 11: 536–541. . Accessed 22 July 2015. doi: 10.1038/nchembio.1867. pmid:26196764
[120]  Pe?a I, Pilar Manzano M, Cantizani J, Kessler A, Alonso-Padilla J, et al. (2015) New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep 5: 8771. . Accessed 27 May 2015. doi: 10.1038/srep08771. pmid:25740547
[121]  Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, et al. (2013) The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496: 57–63. . Accessed 11 July 2014. doi: 10.1038/nature12031. pmid:23485966
[122]  Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, et al. (2013) Genomics of [i]Loa loa[/i], a Wolbachia-free filarial parasite of humans. Nat Genet 45: 495–500.
[123]  Cwiklinski K, Dalton JP, Dufresne PJ, La Course J, Williams DJ, et al. (2015) The [i]Fasciola hepatica[/i] genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol 16: 71. . Accessed 7 April 2015. doi: 10.1186/s13059-015-0632-2. pmid:25887684
[124]  Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, et al. (2007) Draft genome sequence of the sexually transmitted pathogen [i]Trichomonas vaginalis[/i]. Science 315: 207–212. . Accessed 30 September 2014. pmid:17218520
[125]  Adam RD (2000) The Giardia lamblia genome. Int J Parasitol 30: 475–484. . Accessed 20 October 2014. pmid:10731570
[126]  Franzén O, Jerlstr?m-Hultqvist J, Castro E, Sherwood E, Ankarklev J, et al. (2009) Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog 5: e1000560. . Accessed 20 October 2014. doi: 10.1371/journal.ppat.1000560. pmid:19696920

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133