[1] | WHO (2009) Dengue: guidelines for diagnosis, treatment prevention and control. Geneva: World Health Organization.
|
[2] | Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. (2013) The global distribution and burden of dengue. Nature 496: 504–507. doi: 10.1038/nature12060. pmid:23563266
|
[3] | Capeding MR, Tran NH, Hadinegoro SRS, Ismail HIHJM, Chotpitayasunondh T, et al. (2014) Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. The Lancet 384: 1358–1365. doi: 10.1016/s0140-6736(14)61060-6
|
[4] | Brown D, James A (2014) Dengue vector control: new approaches. In: Gubler DJ, Ooi EE, Vasudevan S, Farrar J, editors. Dengue and Dengue Hemorrhagic Fever. 2 ed: CAB International. pp. 519–536.
|
[5] | Franz AWE, Balaraman V, Fraser MJ (2015) Disruption of dengue virus transmission by mosquitoes. Curr Opin Insect Sci 8: 88–96. pmid:26120563 doi: 10.1016/j.cois.2014.12.009
|
[6] | Leftwich PT, Bolton M, Chapman T (2015) Evolutionary biology and genetic techniques for insect control. Evol Appl: doi: 10.1111/eva.12280.
|
[7] | Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40: 692–701. doi: 10.2307/2408456
|
[8] | Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741–751. doi: 10.1038/nrmicro1969. pmid:18794912
|
[9] | Yen JH, Barr AR (1973) The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol 22: 242–250. pmid:4206296 doi: 10.1016/0022-2011(73)90141-9
|
[10] | Tram U, Sullivan W (2002) Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296: 1124–1126. pmid:12004132 doi: 10.1126/science.1070536
|
[11] | Panteleev DY, Goryacheva II, Andrianov BV, Reznik NL, Lazebny OE, et al. (2007) The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russ J Genet 43: 1066–1069. doi: 10.1134/s1022795407090153
|
[12] | Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6: e1000002. doi: 10.1371/journal.pbio.1000002
|
[13] | Hedges LM, Brownlie JC, O'Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322: 702–702. doi: 10.1126/science.1162418. pmid:18974344
|
[14] | Laven H (1967) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216: 383–384. pmid:4228275 doi: 10.1038/216383a0
|
[15] | O'Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, et al. (2012) Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl Trop Dis 6: e1797. doi: 10.1371/journal.pntd.0001797. pmid:23166845
|
[16] | Curtis CF (1976) Population replacement in Culex fatigans by means of cytoplasmic incompatibility: 2. Field cage experiments with overlapping generations*. Bull World Health Organ 53: 107–119. pmid:1085660
|
[17] | Dobson SL, Marsland EJ, Rattanadechakul W (2002) Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160: 1087–1094. pmid:11901124
|
[18] | Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454–457. doi: 10.1038/nature10356. pmid:21866160
|
[19] | Kittayapong P, Baisley KJ, Baimai V, O’Neill SL (2000) Distribution and diversity of Wolbachia infections in Southeast Asian mosquitoes (Diptera: Culicidae). J Med Ent 37: 340–345. doi: 10.1093/jmedent/37.3.340
|
[20] | Popovici J, Moreira LA, Poinsignon A, Iturbe-Ormaetxe I, McNaughton D, et al. (2010) Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes. Mem Inst Oswaldo Cruz 105: 957–964. pmid:21225190 doi: 10.1590/s0074-02762010000800002
|
[21] | McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, et al. (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141–144. doi: 10.1126/science.1165326. pmid:19119237
|
[22] | Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, et al. (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450–453. doi: 10.1038/nature10355. pmid:21866159
|
[23] | Xi Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310: 326–328. pmid:16224027 doi: 10.1126/science.1117607
|
[24] | Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, et al. (2014) Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8: e3115. doi: 10.1371/journal.pntd.0003115. pmid:25211492
|
[25] | Yeap HL, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, et al. (2014) Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasit Vectors 7: 58. doi: 10.1186/1756-3305-7-58. pmid:24495395
|
[26] | Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA (2015) Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg: In press. doi: 10.4269/ajtmh.15-0608
|
[27] | Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139: 1268–1278. doi: 10.1016/j.cell.2009.11.042. pmid:20064373
|
[28] | Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6: e1000833. doi: 10.1371/journal.ppat.1000833. pmid:20368968
|
[29] | Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353: 440–442. pmid:1896086 doi: 10.1038/353440a0
|
[30] | Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR (2013) Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9: e1003607. doi: 10.1371/journal.ppat.1003607. pmid:24068927
|
[31] | Caspari E, Watson G (1959) On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution 13: 568–570. doi: 10.2307/2406138
|
[32] | Brownstein JS, Hett E, O’Neill SL (2003) The potential of virulent Wolbachia to modulate disease transmission by insects. J Invertebr Pathol 84: 24–29. pmid:13678709 doi: 10.1016/s0022-2011(03)00082-x
|
[33] | Crain PR, Mains JW, Suh E, Huang Y, Crowley PH, et al. (2011) Wolbachia infections that reduce immature insect survival: predicted impacts on population replacement. BMC Evol Biol 11: 290. doi: 10.1186/1471-2148-11-290. pmid:21975225
|
[34] | Min K-T, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A 94: 10792–10796. pmid:9380712 doi: 10.1073/pnas.94.20.10792
|
[35] | McGraw EA, Merritt DJ, Droller JN, O'Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A 99: 2918–2923. pmid:11880639 doi: 10.1073/pnas.052466499
|
[36] | McMeniman CJ, Lane AM, Fong AW, Voronin DA, Iturbe-Ormaetxe I, et al. (2008) Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74: 6963–6969. doi: 10.1128/AEM.01038-08. pmid:18836024
|
[37] | Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, et al. (2011) Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583–595. doi: 10.1534/genetics.110.122390. pmid:21135075
|
[38] | McMeniman CJ, O'Neill SL (2010) A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis 4: e748. doi: 10.1371/journal.pntd.0000748. pmid:20644622
|
[39] | Turley AP, Moreira LA, O'Neill SL, McGraw EA (2009) Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Neglected Tropical Diseases 3: e516. doi: 10.1371/journal.pntd.0000516. pmid:19753103
|
[40] | Moreira LA, Saig E, Turley AP, Ribeiro JM, O'Neill SL, et al. (2009) Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia. PLoS Negl Trop Dis 3: e568. doi: 10.1371/journal.pntd.0000568. pmid:20016848
|
[41] | Ritchie SA, Townsend M, Paton CJ, Callahan AG, Hoffmann AA (2015) Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis 9: e0003930. doi: 10.1371/journal.pntd.0003930. pmid:26204449
|
[42] | Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, et al. (2009) Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol 212: 1436–1441. doi: 10.1242/jeb.028951. pmid:19411536
|
[43] | Suh E, Dobson SL (2013) Reduced competitiveness of Wolbachia infected Aedes aegypti larvae in intra- and inter-specific immature interactions. J Invertebr Pathol 114: 173–177. doi: 10.1016/j.jip.2013.08.001. pmid:23933013
|
[44] | Ross PA, Endersby NM, Yeap HL, Hoffmann AA (2014) Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti. Am J Trop Med Hyg 91: 198–205. doi: 10.4269/ajtmh.13-0576. pmid:24732463
|
[45] | Southwood T, Murdie G, Yasuno M, Tonn RJ, Reader P (1972) Studies on the life budget of Aedes aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ 46: 211–226. pmid:4537483
|
[46] | Subra R, Mouchet J (1984) The regulation of preimaginal populations of Aedes aegypti (L.)(Diptera: Culicidae) on the Kenya coast. II. Food as a main regulatory factor. Ann Trop Med Parasitol 78: 63–70. pmid:6547039
|
[47] | Arrivillaga J, Barrera R (2004) Food as a limiting factor for Aedes aegypti in water-storage containers. J Vector Ecol 29: 11–20. pmid:15266737
|
[48] | Barrera R, Amador M, Clark GG (2006) Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J Med Ent 43: 484–492. doi: 10.1093/jmedent/43.3.484
|
[49] | Couret J, Benedict MQ (2014) A meta-analysis of the factors influencing development rate variation in Aedes aegypti (Diptera: Culicidae). BMC Ecol 14: 3. doi: 10.1186/1472-6785-14-3. pmid:24495345
|
[50] | Nguyen TH, Le Nguyen H, Nguyen TY, Vu SN, Tran ND, et al. (2015) Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors: In press. doi: 10.1186/s13071-015-1174-x
|
[51] | Barrera R, Medialdea V (1996) Development time and resistance to starvation of mosquito larvae. J Nat Hist 30: 447–458. doi: 10.1080/00222939600770231
|
[52] | Chambers G, Klowden M (1990) Correlation of nutritional reserves with a critical weight for pupation in larval Aedes aegypti mosquitoes. J Am Mosq Control Assoc 6: 394–399. pmid:2230767
|
[53] | Lan Q, Grier CA (2004) Critical period for pupal commitment in the yellow fever mosquito, Aedes aegypti. J Insect Physiol 50: 667–676. pmid:15234627 doi: 10.1016/j.jinsphys.2004.04.012
|
[54] | Telang A, Frame L, Brown MR (2007) Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). J Exp Biol 210: 854–864. pmid:17297145 doi: 10.1242/jeb.02715
|
[55] | Nishiura JT, Burgos C, Aya S, Goryacheva Y, Lo W (2007) Modulation of larval nutrition affects midgut neutral lipid storage and temporal pattern of transcription factor expression during mosquito metamorphosis. J Insect Physiol 53: 47–58. pmid:17123540 doi: 10.1016/j.jinsphys.2006.09.014
|
[56] | Rasnitsyn S, Yasyukevich V (1989) On the ability of mosquito larvae (Diptera, Culicidae) to endure starvation. Entomol Rev 68: 143–151.
|
[57] | Barrera R (1996) Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes. Ecol Entomol 21: 117–127. doi: 10.1111/j.1365-2311.1996.tb01178.x
|
[58] | Padmanabha H, Lord CC, Lounibos LP (2011) Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae. Med Vet Entomol 25: 445–453. doi: 10.1111/j.1365-2915.2011.00950.x. pmid:21410734
|
[59] | Wigglesworth V (1942) The storage of protein, fat, glycogen and uric acid in the fat body and other tissues of mosquito larvae. J Exp Biol 19: 56–77.
|
[60] | Gilpin ME, McClelland G (1979) Systems analysis of the yellow fever mosquito Aedes aegypti. Fortschr Zool 25: 355. pmid:535875
|
[61] | Perez MH, Noriega FG (2012) Aedes aegypti pharate 1st instar quiescence affects larval fitness and metal tolerance. J Insect Physiol 58: 824–829. doi: 10.1016/j.jinsphys.2012.03.005. pmid:22426084
|
[62] | Daugherty MP, Alto BW, Juliano SA (2000) Invertebrate carcasses as a resource for competing Aedes albopictus and Aedes aegypti (Diptera: Culicidae). J Med Ent 37: 364–372. doi: 10.1093/jmedent/37.3.364
|
[63] | Bara J, Clark T, Remold S (2014) Utilization of larval and pupal detritus by Aedes aegypti and Aedes albopictus. J Vector Ecol 39: 44–47. doi: 10.1111/j.1948-7134.2014.12068.x. pmid:24820554
|
[64] | Edgerly J, Willey M, Livdahl T (1999) Intraguild predation among larval treehole mosquitoes, Aedes albopictus, Ae. aegypti, and Ae. triseriatus (Diptera: Culicidae), in laboratory microcosms. J Med Ent 36: 394–399. doi: 10.1093/jmedent/36.3.394
|
[65] | Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, et al. (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2: E69–E69. pmid:15024419 doi: 10.1371/journal.pbio.0020069
|
[66] | Caragata EP, Rances E, Hedges LM, Gofton AW, Johnson KN, et al. (2013) Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 9: e1003459. doi: 10.1371/journal.ppat.1003459. pmid:23825950
|
[67] | Caragata EP, Rances E, O'Neill SL, McGraw EA (2014) Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb Ecol 67: 205–218. doi: 10.1007/s00248-013-0339-4. pmid:24337107
|
[68] | Ponton F, Wilson K, Holmes A, Raubenheimer D, Robinson KL, et al. (2015) Macronutrients mediate the functional relationship between Drosophila and Wolbachia. Proc Biol Sci 282: 20142029. doi: 10.1098/rspb.2014.2029. pmid:25520356
|
[69] | Kitching RL (2000) Food webs and container habitats: the natural history and ecology of phytotelmata: Cambridge University Press.
|
[70] | Yee DA, Allgood D, Kneitel JM, Kuehn KA (2012) Constitutive differences between natural and artificial container mosquito habitats: vector communities, resources, microorganisms, and habitat parameters. J Med Ent 49: 482–491. doi: 10.1603/me11227
|
[71] | Agudelo-Silva F, Spielman A (1984) Paradoxical effects of simulated larviciding on production of adult mosquitoes. Am J Trop Med Hyg 33: 1267–1269. pmid:6507734
|
[72] | Wilson ML, Agudelo-Silva F, Spielman A (1990) Increased abundance, size, and longevity of food-deprived mosquito populations exposed to a fungal larvicide. Am J Trop Med Hyg 43: 551–556. pmid:2240376
|
[73] | Yee DA, Kesavaraju B, Juliano SA (2007) Direct and indirect effects of animal detritus on growth, survival, and mass of invasive container mosquito Aedes albopictus (Diptera: Culicidae). J Med Ent 44: 580–588. doi: 10.1603/0022-2585(2007)44[580:daieoa]2.0.co;2
|
[74] | Nasci RS (1990) Relationship of wing length to adult dry weight in several mosquito species (Diptera: Culicidae). J Med Ent 27: 716–719. doi: 10.1093/jmedent/27.4.716
|
[75] | Briegel H (1990) Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol 36: 165–172. doi: 10.1016/0022-1910(90)90118-y
|
[76] | Anderson LE (1954) Hoyer's solution as a rapid permanent mounting medium for bryophytes. Bryologist 7: 242–244. doi: 10.1639/0007-2745(1954)57[242:hsaarp]2.0.co;2
|
[77] | Huestis DL, Yaro AS, Traore AI, Adamou A, Kassogue Y, et al. (2011) Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. J Exp Biol 214: 2345–2353. doi: 10.1242/jeb.054668. pmid:21697426
|
[78] | Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM (2012) High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol 78: 4740–4743. doi: 10.1128/AEM.00069-12. pmid:22522691
|
[79] | Merritt R, Dadd R, Walker E (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37: 349–374. pmid:1347208 doi: 10.1146/annurev.en.37.010192.002025
|
[80] | Hoffmann AA, Ross PA, Ra?i? G (2015) Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8: 751–768. doi: 10.1111/eva.12286. pmid:26366194
|
[81] | Mouton L, Dedeine F, Henri H, Bouletreau M, Profizi N, et al. (2004) Virulence, multiple infections and regulation of symbiotic population in the Wolbachia-Asobara tabida symbiosis. Genetics 168: 181–189. pmid:15454536 doi: 10.1534/genetics.104.026716
|
[82] | Duron O, Labbé P, Berticat C, Rousset F, Guillot S, et al. (2006) High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution 60: 303–314. pmid:16610322 doi: 10.1554/05-340.1
|
[83] | Chrostek E, Teixeira L (2015) Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol 13: e1002065. doi: 10.1371/journal.pbio.1002065. pmid:25668031
|
[84] | Martinez J, Ok S, Smith S, Snoeck K, Day JP, et al. (2015) Should symbionts be nice or selfish? Antiviral effects of Wolbachia are costly but reproductive parasitism is not. PLoS Pathog 11: e1005021. doi: 10.1371/journal.ppat.1005021. pmid:26132467
|
[85] | Farjana T, Tuno N (2012) Effect of body size on multiple blood feeding and egg retention of Aedes aegypti (L.) and Aedes albopictus (Skuse)(Diptera: Culicidae). Med Entomol Zool 63: 123–131. doi: 10.7601/mez.63.123
|
[86] | Ponlawat A, Harrington LC (2007) Age and body size influence male sperm capacity of the dengue vector Aedes aegypti (Diptera: Culicidae). J Med Ent 44: 422–426. doi: 10.1093/jmedent/44.3.422
|
[87] | Tun‐Lin W, Burkot T, Kay B (2000) Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14: 31–37. pmid:10759309 doi: 10.1046/j.1365-2915.2000.00207.x
|
[88] | Yeap HL, Endersby NM, Johnson PH, Ritchie SA, Hoffmann AA (2013) Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. Am J Trop Med Hyg 89: 78–92. doi: 10.4269/ajtmh.12-0719. pmid:23716403
|
[89] | Kittayapong P, Baisley KJ, Sharpe RG, Baimai V, O'Neill SL (2002) Maternal transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand. Am J Trop Med Hyg 66: 103–107. pmid:12135258
|
[90] | Dutton TJ, Sinkins SP (2004) Strain‐specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions. Insect Mol Biol 13: 317–322. pmid:15157232 doi: 10.1111/j.0962-1075.2004.00490.x
|
[91] | Unckless RL, Boelio LM, Herren JK, Jaenike J (2009) Wolbachia as populations within individual insects: causes and consequences of density variation in natural populations. Proc Biol Sci 276: 2805–2811. doi: 10.1098/rspb.2009.0287. pmid:19419989
|
[92] | Boyle L, O'Neill SL, Robertson HM, Karr TL (1993) Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260: 1796–1799. pmid:8511587 doi: 10.1126/science.8511587
|
[93] | Clancy DJ, Hoffmann AA (1998) Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia‐infected Drosophila simulans. Entomol Exp Appl 86: 13–24. doi: 10.1046/j.1570-7458.1998.00261.x
|
[94] | Veneti Z, Clark ME, Zabalou S, Karr TL, Savakis C, et al. (2003) Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164: 545–552. pmid:12807775
|
[95] | Jaenike J (2009) Coupled population dynamics of endosymbionts within and between hosts. Oikos 118: 353–362. doi: 10.1111/j.1600-0706.2008.17110.x
|
[96] | Mouton L, Henri H, Bouletreau M, Vavre F (2006) Effect of temperature on Wolbachia density and impact on cytoplasmic incompatibility. Parasitology 132: 49–56. pmid:16393353 doi: 10.1017/s0031182005008723
|
[97] | Wiwatanaratanabutr S, Kittayapong P (2006) Effects of temephos and temperature on Wolbachia load and life history traits of Aedes albopictus. Med Vet Entomol 20: 300–307. pmid:17044881 doi: 10.1111/j.1365-2915.2006.00640.x
|
[98] | Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB (2014) Temperature alters Plasmodium blocking by Wolbachia. Sci Rep 4: 3932. doi: 10.1038/srep03932. pmid:24488176
|
[99] | Correa CC, Ballard JW (2014) What can symbiont titres tell us about co-evolution of Wolbachia and their host? J Invertebr Pathol 118: 20–27. doi: 10.1016/j.jip.2014.02.009. pmid:24594301
|
[100] | Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, et al. (2015) The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog 11: e1004777. doi: 10.1371/journal.ppat.1004777. pmid:25826386
|
[101] | Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, et al. (2014) Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis 8: e2688. doi: 10.1371/journal.pntd.0002688. pmid:24587459
|
[102] | Yee DA, Juliano SA (2012) Concurrent effects of resource pulse amount, type, and frequency on community and population properties of consumers in detritus-based systems. Oecologia 169: 511–522. doi: 10.1007/s00442-011-2209-4. pmid:22134863
|
[103] | Walsh R, Facchinelli L, Ramsey J, Bond J, Gould F (2011) Assessing the impact of density dependence in field populations of Aedes aegypti. J Vector Ecol 36: 300–307. doi: 10.1111/j.1948-7134.2011.00170.x. pmid:22129401
|
[104] | Walsh RK, Aguilar CL, Facchinelli L, Valerio L, Ramsey JM, et al. (2013) Regulation of Aedes aegypti population dynamics in field systems: quantifying direct and delayed density dependence. Am J Trop Med Hyg 89: 68–77. doi: 10.4269/ajtmh.12-0378. pmid:23669230
|
[105] | Koenraadt CJ, Kormaksson M, Harrington LC (2010) Effects of inbreeding and genetic modification on Aedes aegypti larval competition and adult energy reserves. Parasit Vectors 3: 92. doi: 10.1186/1756-3305-3-92. pmid:20925917
|
[106] | Turelli M, Hoffmann A (1999) Microbe‐induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol 8: 243–255. pmid:10380108 doi: 10.1046/j.1365-2583.1999.820243.x
|
[107] | Barton NH, Turelli M (2011) Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of allee effects. Am Nat 178: E48–E75. doi: 10.1086/661246. pmid:21828986
|
[108] | Turelli M (2010) Cytoplasmic incompatibility in populations with overlapping generations. Evolution 64: 232–241. doi: 10.1111/j.1558-5646.2009.00822.x. pmid:19686264
|