In Vitro Mode of Action and Anti-thrombotic Activity of Boophilin, a Multifunctional Kunitz Protease Inhibitor from the Midgut of a Tick Vector of Babesiosis, Rhipicephalus microplus
Background Hematophagous mosquitos and ticks avoid host hemostatic system through expression of enzyme inhibitors targeting proteolytic reactions of the coagulation and complement cascades. While most inhibitors characterized to date were found in the salivary glands, relatively few others have been identified in the midgut. Among those, Boophilin is a 2-Kunitz multifunctional inhibitor targeting thrombin, elastase, and kallikrein. However, the kinetics of Boophilin interaction with these enzymes, how it modulates platelet function, and whether it inhibits thrombosis in vivo have not been determined. Methodology/Principal Findings Boophilin was expressed in HEK293 cells and purified to homogeneity. Using amidolytic assays and surface plasmon resonance experiments, we have demonstrated that Boophilin behaves as a classical, non-competitive inhibitor of thrombin with respect to small chromogenic substrates by a mechanism dependent on both exosite-1 and catalytic site. Inhibition is accompanied by blockade of platelet aggregation, fibrin formation, and clot-bound thrombin in vitro. Notably, we also identified Boophilin as a non-competitive inhibitor of FXIa, preventing FIX activation. In addition, Boophilin inhibits kallikrein activity and the reciprocal activation, indicating that it targets the contact pathway. Furthermore, Boophilin abrogates cathepsin G- and plasmin-induced platelet aggregation and partially affects elastase-mediated cleavage of Tissue Factor Pathway Inhibitor (TFPI). Finally, Boophilin inhibits carotid artery occlusion in vivo triggered by FeCl3, and promotes bleeding according to the mice tail transection method. Conclusion/Significance Through inhibition of several enzymes involved in proteolytic cascades and cell activation, Boophilin plays a major role in keeping the midgut microenvironment at low hemostatic and inflammatory tonus. This response allows ticks to successfully digest a blood meal which is critical for metabolism and egg development. Boophilin is the first tick midgut FXIa anticoagulant also found to inhibit thrombosis.
Koh CY, Kini RM (2009) Molecular diversity of anticoagulants from haematophagous animals. Thromb Haemost 102: 437–453. doi: 10.1160/TH09-04-0221. pmid:19718463
[3]
Louw E, van der Merwe NA, Neitz AW, Maritz-Olivier C (2012) Evolution of the tissue factor pathway inhibitor-like Kunitz domain-containing protein family in Rhipicephalus microplus. Int J Parasitol. doi: 10.1016/j.ijpara.2012.11.006
[4]
Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM (2009) The role of saliva in tick feeding. Front Biosci 14: 2051–2088. doi: 10.2741/3363
[5]
Ribeiro JM, Francischetti IM (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 73–88. pmid:12194906 doi: 10.1146/annurev.ento.48.060402.102812
[6]
Steen NA, Barker SC, Alewood PF (2006) Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47: 1–20. pmid:16364387 doi: 10.1016/j.toxicon.2005.09.010
[7]
Mans BJ, Francischetti I.M.B. (2010) Sialomic perspectives on the evolution of blood-feeding behavior in arthropods: future therapeutics by natural design. Toxins and Hemostasis From bench to bedside Eds Kini, RM, Clemetson, KJ, Markland, FS, McLane, MA, Morita, T 21–44. Springer, New York.
[8]
Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, et al. (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10: 483–511. doi: 10.1146/annurev.genom.9.081307.164356. pmid:19640225
[9]
Francischetti IM (2010) Platelet aggregation inhibitors from hematophagous animals. Toxicon 56: 1130–1144. doi: 10.1016/j.toxicon.2009.12.003. pmid:20035779
[10]
Chmelar J, Kotal J, Karim S, Kopacek P, Francischetti IM, et al. (2015) Sialomes and Mialomes: A Systems-Biology View of Tick Tissues and Tick-Host Interactions. Trends Parasitol. doi: 10.1016/j.pt.2015.10.002
[11]
van de Locht A, Stubbs MT, Bode W, Friedrich T, Bollschweiler C, et al. (1996) The ornithodorin-thrombin crystal structure, a key to the TAP enigma? EMBO J 15: 6011–6017. pmid:8947023
[12]
Araujo RN, Campos IT, Tanaka AS, Santos A, Gontijo NF, et al. (2007) Brasiliensin: A novel intestinal thrombin inhibitor from Triatoma brasiliensis (Hemiptera: Reduviidae) with an important role in blood intake. Int J Parasitol 37: 1351–1358. pmid:17575982 doi: 10.1016/j.ijpara.2007.04.017
[13]
Mende K, Petoukhova O, Koulitchkova V, Schaub GA, Lange U, et al. (1999) Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect. Dipetalogaster maximus cDNA cloning, expression and characterization. Eur J Biochem 266: 583–590. pmid:10561601 doi: 10.1046/j.1432-1327.1999.00895.x
[14]
van de Locht A, Lamba D, Bauer M, Huber R, Friedrich T, et al. (1995) Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 14: 5149–5157. pmid:7489704
[15]
Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS (2006) The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 88: 673–681. pmid:16469426 doi: 10.1016/j.biochi.2005.11.011
[16]
Campos IT, Amino R, Sampaio CA, Auerswald EA, Friedrich T, et al. (2002) Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas' disease vector: gene cloning, expression and characterization of the inhibitor. Insect Biochem Mol Biol 32: 991–997. pmid:12213235 doi: 10.1016/s0965-1748(02)00035-8
[17]
Xu Y, Cai TQ, Castriota G, Zhou Y, Hoos L, et al. (2014) Factor XIIa inhibition by Infestin-4: in vitro mode of action and in vivo antithrombotic benefit. Thromb Haemost 111: 694–704. doi: 10.1160/TH13-08-0668. pmid:24336918
[18]
Hagedorn I, Schmidbauer S, Pleines I, Kleinschnitz C, Kronthaler U, et al. (2010) Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 121: 1510–1517. doi: 10.1161/CIRCULATIONAHA.109.924761. pmid:20308613
[19]
Cao J, Shi L, Zhou Y, Gao X, Zhang H, et al. (2013) Characterization of a new Kunitz-type serine protease inhibitor from the hard tick Rhipicephalus hemaphysaloides. Arch Insect Biochem Physiol 84: 104–113. doi: 10.1002/arch.21118. pmid:25708749
[20]
Macedo-Ribeiro S, Almeida C, Calisto BM, Friedrich T, Mentele R, et al. (2008) Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick. PLoS One 3: e1624. doi: 10.1371/journal.pone.0001624. pmid:18286181
[21]
Soares TS, Watanabe RM, Tanaka-Azevedo AM, Torquato RJ, Lu S, et al. (2012) Expression and functional characterization of boophilin, a thrombin inhibitor from Rhipicephalus (Boophilus) microplus midgut. Vet Parasitol 187: 521–528. doi: 10.1016/j.vetpar.2012.01.027. pmid:22341830
[22]
Oliveira F, Kamhawi S, Seitz AE, Pham VM, Guigal PM, et al. (2006) From transcriptome to immunome: identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine 24: 374–390. pmid:16154670 doi: 10.1016/j.vaccine.2005.07.085
[23]
Ma D, Mizurini DM, Assumpcao TC, Li Y, Qi Y, et al. (2013) Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo. Blood 122: 4094–4106. doi: 10.1182/blood-2013-08-517474. pmid:24159172
[24]
Assumpcao TC, Ma D, Schwarz A, Reiter K, Santana JM, et al. (2013) Salivary Antigen-5/CAP Family Members Are Cu2+-dependent Antioxidant Enzymes That Scavenge OFormula and Inhibit Collagen-induced Platelet Aggregation and Neutrophil Oxidative Burst. J Biol Chem 288: 14341–14361. doi: 10.1074/jbc.M113.466995. pmid:23564450
[25]
Francischetti IM, Valenzuela JG, Ribeiro JM (1999) Anophelin: kinetics and mechanism of thrombin inhibition. Biochemistry 38: 16678–16685. pmid:10600131 doi: 10.1021/bi991231p
[26]
Collin N, Assumpcao TC, Mizurini DM, Gilmore DC, Dutra-Oliveira A, et al. (2012) Lufaxin, a Novel Factor Xa Inhibitor From the Salivary Gland of the Sand Fly Lutzomyia longipalpis Blocks Protease-Activated Receptor 2 Activation and Inhibits Inflammation and Thrombosis In Vivo. Arterioscler Thromb Vasc Biol 32: 2185–2198. doi: 10.1161/ATVBAHA.112.253906. pmid:22796577
[27]
Navaneetham D, Wu W, Li H, Sinha D, Tuma RF, et al. (2013) P1 and P2' site mutations convert protease nexin-2 from a factor XIa inhibitor to a plasmin inhibitor. J Biochem 153: 221–231. doi: 10.1093/jb/mvs133. pmid:23172304
[28]
Kotsyfakis M, Sa-Nunes A, Francischetti IM, Mather TN, Andersen JF, et al. (2006) Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem 281: 26298–26307. pmid:16772304 doi: 10.1074/jbc.m513010200
[29]
Assumpcao TC, Alvarenga PH, Ribeiro JM, Andersen JF, Francischetti IM (2010) Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity for TXA2, PGF2alpha, and 15(S)-HETE. J Biol Chem 285: 39001–39012. doi: 10.1074/jbc.M110.152835. pmid:20889972
[30]
Waisberg M, Molina-Cruz A, Mizurini DM, Gera N, Sousa BC, et al. (2014) Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PLoS Pathog 10: e1004338. doi: 10.1371/journal.ppat.1004338. pmid:25211214
Huntington JA (2014) Natural inhibitors of thrombin. Thromb Haemost 111: 583–589. doi: 10.1160/TH13-10-0811. pmid:24477356
[33]
Gailani D, Bane CE, Gruber A (2015) Factor XI and contact activation as targets for antithrombotic therapy. J Thromb Haemost 13: 1383–1395. doi: 10.1111/jth.13005. pmid:25976012
[34]
Franco AT, Corken A, Ware J (2015) Platelets at the interface of thrombosis, inflammation, and cancer. Blood 126: 582–588. doi: 10.1182/blood-2014-08-531582. pmid:26109205
[35]
Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, et al. (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16: 887–896. doi: 10.1038/nm.2184. pmid:20676107
[36]
Ruf W, Ruggeri ZM (2010) Neutrophils release brakes of coagulation. Nat Med 16: 851–852. doi: 10.1038/nm0810-851. pmid:20689544
[37]
Syrovets T, Lunov O, Simmet T (2012) Plasmin as a proinflammatory cell activator. J Leukoc Biol 92: 509–519. doi: 10.1189/jlb.0212056. pmid:22561604
[38]
Faraday N, Schunke K, Saleem S, Fu J, Wang B, et al. (2013) Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils. PLoS One 8: e71447. doi: 10.1371/journal.pone.0071447. pmid:23940756
[39]
Chmelar J, Oliveira CJ, Rezacova P, Francischetti IM, Kovarova Z, et al. (2011) A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 117: 736–744. doi: 10.1182/blood-2010-06-293241. pmid:20940421
[40]
Higuchi DA, Wun TC, Likert KM, Broze GJ Jr. (1992) The effect of leukocyte elastase on tissue factor pathway inhibitor. Blood 79: 1712–1719. pmid:1558967
[41]
Mizurini DM, Francischetti IM, Monteiro RQ (2013) Aegyptin inhibits collagen-induced coagulation activation in vitro and thromboembolism in vivo. Biochem Biophys Res Commun 436: 235–239. doi: 10.1016/j.bbrc.2013.05.082. pmid:23726920
[42]
Barros VC, Assumpcao JG, Cadete AM, Santos VC, Cavalcante RR, et al. (2009) The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4: e6047. doi: 10.1371/journal.pone.0006047. pmid:19557176
[43]
Paim RM, Araujo RN, Soares AC, Lemos LC, Tanaka AS, et al. (2011) Influence of the intestinal anticoagulant in the feeding performance of triatomine bugs (Hemiptera; Reduviidae). Int J Parasitol 41: 765–773. doi: 10.1016/j.ijpara.2011.01.014. pmid:21447340
[44]
Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3: 1800–1814. pmid:16102047 doi: 10.1111/j.1538-7836.2005.01377.x
[45]
Martinod K, Wagner DD (2014) Thrombosis: tangled up in NETs. Blood 123: 2768–2776. doi: 10.1182/blood-2013-10-463646. pmid:24366358
[46]
Redecha P, Tilley R, Tencati M, Salmon JE, Kirchhofer D, et al. (2007) Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury. Blood 110: 2423–2431. pmid:17536017 doi: 10.1182/blood-2007-01-070631
Sojka D, Franta Z, Horn M, Caffrey CR, Mares M, et al. (2013) New insights into the machinery of blood digestion by ticks. Trends Parasitol 29: 276–285. doi: 10.1016/j.pt.2013.04.002. pmid:23664173
[49]
Horn F, dos Santos PC, Termignoni C (2000) Boophilus microplus anticoagulant protein: an antithrombin inhibitor isolated from the cattle tick saliva. Arch Biochem Biophys 384: 68–73. pmid:11147837 doi: 10.1006/abbi.2000.2076
[50]
Ciprandi A, de Oliveira SK, Masuda A, Horn F, Termignoni C (2006) Boophilus microplus: its saliva contains microphilin, a small thrombin inhibitor. Exp Parasitol 114: 40–46. pmid:16600217 doi: 10.1016/j.exppara.2006.02.010
[51]
Xu T, Lew-Tabor A, Rodriguez-Valle M (2015) Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks Tick Borne Dis. doi: 10.1016/j.ttbdis.2015.09.007
[52]
Choumet V, Attout T, Chartier L, Khun H, Sautereau J, et al. (2012) Visualizing non infectious and infectious Anopheles gambiae blood feedings in naive and saliva-immunized mice. PLoS One 7: e50464. doi: 10.1371/journal.pone.0050464. pmid:23272060
[53]
Soares AC, Araujo RN, Carvalho-Tavares J, Gontijo Nde F, Pereira MH (2014) Intravital microscopy and image analysis of Rhodnius prolixus (Hemiptera: Reduviidae) hematophagy: the challenge of blood intake from mouse skin. Parasitol Int 63: 229–236. doi: 10.1016/j.parint.2013.07.001. pmid:23886517
[54]
Krenn HW, Aspock H (2012) Form, function and evolution of the mouthparts of blood-feeding Arthropoda. Arthropod Struct Dev 41: 101–118. doi: 10.1016/j.asd.2011.12.001. pmid:22317988