Background Serological assays for human IgG4 to the Onchocerca volvulus antigen Ov16 have been used to confirm elimination of onchocerciasis in much of the Americas and parts of Africa. A standardized source of positive control antibody (human anti-Ov16 IgG4) will ensure the quality of surveillance data using these tests. Methodology/Principal Findings A recombinant human IgG4 antibody to Ov16 was identified by screening against a synthetic human Fab phage display library and converted into human IgG4. This antibody was developed into different positive control formulations for enzyme-linked immunosorbent assay (ELISA) and rapid diagnostic test (RDT) platforms. Variation in ELISA results and utility as a positive control of the antibody were assessed from multiple laboratories. Temperature and humidity conditions were collected across seven surveillance activities from 2011–2014 to inform stability requirements for RDTs and positive controls. The feasibility of the dried positive control for RDT was evaluated during onchocerciasis surveillance activity in Togo, in 2014. When the anti-Ov16 IgG4 antibody was used as a standard dilution in horseradish peroxidase (HRP) and alkaline phosphatase (AP) ELISAs, the detection limits were approximately 1ng/mL by HRP ELISA and 10ng/mL by AP ELISA. Positive control dilutions and spiked dried blood spots (DBS) produced similar ELISA results. Used as a simple plate normalization control, the positive control antibody may improve ELISA data comparison in the context of inter-laboratory variation. The aggregate temperature and humidity monitor data informed temperature parameters under which the dried positive control was tested and are applicable inputs for testing of diagnostics tools intended for sub-Saharan Africa. As a packaged positive control for Ov16 RDTs, stability of the antibody was demonstrated for over six months at relevant temperatures in the laboratory and for over 15 weeks under field conditions. Conclusions The recombinant human anti-Ov16 IgG4 antibody-based positive control will benefit inter-laboratory validation of ELISA assays and serve as quality control (QC) reagents for Ov16 RDTs at different points of the supply chain from manufacturer to field use.
References
[1]
Basanez MG, Pion SD, Churcher TS, Breitling LP, Little MP, et al. River blindness: a success story under threat? PLoS Med. 2006;3: e371. pmid:17002504 doi: 10.1371/journal.pmed.0030371
[2]
Cupp EW, Sauerbrey M, Richards F. Elimination of human onchocerciasis: history of progress and current feasibility using ivermectin (Mectizan((R))) monotherapy. Acta Trop. 2011;120 Suppl 1: S100–S108. doi: 10.1016/j.actatropica.2010.08.009. pmid:20801094
[3]
Cruz-Ortiz N, Gonzalez RJ, Lindblade KA, Richards FO Jr., Sauerbrey M, et al. Elimination of Onchocerca volvulus Transmission in the Huehuetenango Focus of Guatemala. J Parasitol Res. 2012;2012: 638429. doi: 10.1155/2012/638429. pmid:22970346
[4]
Higazi TB, Zarroug IM, Mohamed HA, Elmubark WA, Deran TC, et al. Interruption of Onchocerca volvulus transmission in the Abu Hamed focus, Sudan. Am J Trop Med Hyg. 2013;89: 51–57. doi: 10.4269/ajtmh.13-0112. pmid:23690554
[5]
Katabarwa MN, Walsh F, Habomugisha P, Lakwo TL, Agunyo S, et al. Transmission of onchocerciasis in wadelai focus of northwestern Uganda has been interrupted and the disease eliminated. J Parasitol Res. 2012;2012: 748540. doi: 10.1155/2012/748540. pmid:22970347
[6]
Lakwo TL, Garms R, Rubaale T, Katabarwa M, Walsh F, et al. The disappearance of onchocerciasis from the Itwara focus, western Uganda after elimination of the vector Simulium neavei and 19 years of annual ivermectin treatments. Acta Trop. 2013;126: 218–221. doi: 10.1016/j.actatropica.2013.02.016. pmid:23458325
[7]
Lovato R, Guevara A, Guderian R, Proano R, Unnasch T, et al. Interruption of infection transmission in the onchocerciasis focus of Ecuador leading to the cessation of ivermectin distribution. PLoS Negl Trop Dis. 2014;8: e2821. doi: 10.1371/journal.pntd.0002821. pmid:24853587
[8]
Rodriguez-Perez MA, Unnasch TR, Dominguez-Vazquez A, Morales-Castro AL, Pena-Flores GP, et al. Interruption of transmission of Onchocerca volvulus in the Oaxaca focus, Mexico. Am J Trop Med Hyg. 2010;83: 21–27. doi: 10.4269/ajtmh.2010.09-0544. pmid:20595472
[9]
Traore MO, Sarr MD, Badji A, Bissan Y, Diawara L, et al. Proof-of-principle of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: final results of a study in Mali and Senegal. PLoS Negl Trop Dis. 2012;6: e1825. doi: 10.1371/journal.pntd.0001825. pmid:23029586
[10]
Boatin BA, Toe L, Alley ES, Nagelkerke NJ, Borsboom G, et al. Detection of Onchocerca volvulus infection in low prevalence areas: a comparison of three diagnostic methods. Parasitology. 2002;125: 545–552. pmid:12553573
Lobos E, Weiss N, Karam M, Taylor HR, Ottesen EA, et al. An immunogenic Onchocerca volvulus antigen: a specific and early marker of infection. Science. 1991;251: 1603–1605. pmid:2011741 doi: 10.1126/science.2011741
[13]
Ramachandran CP. Improved immunodiagnostic tests to monitor onchocerciasis control programmes—a multicenter effort. Parasitol Today. 1993;9: 77–79. pmid:15463714 doi: 10.1016/0169-4758(93)90204-s
[14]
Evans DS, Alphonsus K, Umaru J, Eigege A, Miri E, et al. Status of Onchocerciasis transmission after more than a decade of mass drug administration for onchocerciasis and lymphatic filariasis elimination in central Nigeria: challenges in coordinating the stop MDA decision. PLoS Negl Trop Dis. 2014;8: e3113. doi: 10.1371/journal.pntd.0003113. pmid:25233351
[15]
Oguttu D, Byamukama E, Katholi CR, Habomugisha P, Nahabwe C, et al. Serosurveillance to monitor onchocerciasis elimination: the Ugandan experience. Am J Trop Med Hyg. 2014;90: 339–345. doi: 10.4269/ajtmh.13-0546. pmid:24343885
[16]
Golden A, Steel C, Yokobe L, Jackson E, Barney R, et al. Extended result reading window in lateral flow tests detecting exposure to Onchocerca volvulus: a new technology to improve epidemiological surveillance tools. PLoS One. 2013;8: e69231. doi: 10.1371/journal.pone.0069231. pmid:23935960
[17]
Lipner EM, Dembele N, Souleymane S, Alley WS, Prevots DR, et al. Field applicability of a rapid-format anti-Ov-16 antibody test for the assessment of onchocerciasis control measures in regions of endemicity. J Infect Dis. 2006;194: 216–221. pmid:16779728 doi: 10.1086/505081
[18]
Weil GJ, Steel C, Liftis F, Li BW, Mearns G, et al. A rapid-format antibody card test for diagnosis of onchocerciasis. J Infect Dis. 2000;182: 1796–1799. pmid:11069258 doi: 10.1086/317629
[19]
Simmons JH. Development, application, and quality control of serology assays used for diagnostic monitoring of laboratory nonhuman primates. ILAR J. 2008;49: 157–169. pmid:18323578 doi: 10.1093/ilar.49.2.157
[20]
Jacobson RH. Validation of serological assays for diagnosis of infectious diseases. Rev Sci Tech. 1998;17: 469–526. pmid:9713892
[21]
Knappik A, Capuano F, Frisch C, Ylera F, Bonelli F. Development of recombinant human IgA for anticardiolipin antibodies assay standardization. Ann N Y Acad Sci. 2009;1173: 190–198. doi: 10.1111/j.1749-6632.2009.04749.x. pmid:19758150
[22]
Knappik A, Ge L, Honegger A, Pack P, Fischer M, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296: 57–86. pmid:10656818 doi: 10.1006/jmbi.1999.3444
[23]
Prassler J, Thiel S, Pracht C, Polzer A, Peters S, et al. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol. 2011;413: 261–278. doi: 10.1016/j.jmb.2011.08.012. pmid:21856311
[24]
Jarutat T, Frisch C, Nickels C, Merz H, Knappik A. Isolation and comparative characterization of Ki-67 equivalent antibodies from the HuCAL phage display library. Biol Chem. 2006;387: 995–1003. pmid:16913849 doi: 10.1515/bc.2006.123
[25]
Pack P, Pluckthun A. Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli. Biochemistry. 1992;31: 1579–1584. pmid:1737014 doi: 10.1021/bi00121a001
[26]
Einhauer A, Jungbauer A. The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods. 2001;49: 455–465. pmid:11694294 doi: 10.1016/s0165-022x(01)00213-5
[27]
Schmidt TG, Batz L, Bonet L, Carl U, Holzapfel G, et al. Development of the Twin-Strep-tag(R) and its application for purification of recombinant proteins from cell culture supernatants. Protein Expr Purif. 2013;92: 54–61. doi: 10.1016/j.pep.2013.08.021. pmid:24012791
[28]
Knappik A, Brundiers R. Recombinant antibody expression and purification. In: Walker J, editor. The Protein Protocols Handbook. New York: Humana Press. pp 1929–1943.
[29]
WHO. Certification of elimination of human onchocerciasis: criteria and procedures. World Health Organization meeting on criteria for certification of interruption of transmission / elimination of human onchocerciasis. 2001. 9-28-2001. Ref Type: Conference Proceeding
[30]
Weil GJ, Curtis KC, Fischer PU, Won KY, Lammie PJ, et al. A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14. Acta Trop. 2011;120 Suppl 1: S19–S22. doi: 10.1016/j.actatropica.2010.04.010. pmid:20430004
[31]
Kubofcik J, Fink DL, Nutman TB. Identification of Wb123 as an early and specific marker of Wuchereria bancrofti infection. PLoS Negl Trop Dis. 2012;6: e1930. doi: 10.1371/journal.pntd.0001930. pmid:23236529