全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Structure-Bioactivity Relationship for Benzimidazole Thiophene Inhibitors of Polo-Like Kinase 1 (PLK1), a Potential Drug Target in Schistosoma mansoni

DOI: 10.1371/journal.pntd.0004356

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Schistosoma flatworm parasites cause schistosomiasis, a chronic and debilitating disease of poverty in developing countries. Praziquantel is employed for treatment and disease control. However, its efficacy spectrum is incomplete (less active or inactive against immature stages of the parasite) and there is a concern of drug resistance. Thus, there is a need to identify new drugs and drug targets. Methodology/Principal Findings We show that RNA interference (RNAi) of the Schistosoma mansoni ortholog of human polo-like kinase (huPLK)1 elicits a deleterious phenotypic alteration in post-infective larvae (schistosomula or somules). Phenotypic screening and analysis of schistosomula and adult S. mansoni with small molecule inhibitors of huPLK1 identified a number of potent anti-schistosomals. Among these was a GlaxoSmithKline (GSK) benzimidazole thiophene inhibitor that has completed Phase I clinical trials for treatment of solid tumor malignancies. We then obtained GSKs Published Kinase Inhibitor Sets (PKIS) 1 and 2, and phenotypically screened an expanded series of 38 benzimidazole thiophene PLK1 inhibitors. Computational analysis of controls and PLK1 inhibitor-treated populations of somules demonstrated a distinctive phenotype distribution. Using principal component analysis (PCA), the phenotypes exhibited by these populations were mapped, visualized and analyzed through projection to a low-dimensional space. The phenotype distribution was found to have a distinct shape and topology, which could be elicited using cluster analysis. A structure-activity relationship (SAR) was identified for the benzimidazole thiophenes that held for both somules and adult parasites. The most potent inhibitors produced marked phenotypic alterations at 1–2 μM within 1 h. Among these were compounds previously characterized as potent inhibitors of huPLK1 in cell assays. Conclusions/Significance The reverse genetic and chemical SAR data support a continued investigation of SmPLK1 as a possible drug target and/or the prosecution of the benzimidazole thiophene chemotype as a source of novel anti-schistosomals.

References

[1]  WHO. Schistosomiasis: Fact sheet N°115: WHO; 2014. .
[2]  Domling A, Khoury K. Praziquantel and schistosomiasis. ChemMedChem. 2010;5(9):1420–34. doi: 10.1002/cmdc.201000202. pmid:20677314
[3]  Abdul-Ghani RA, Loutfy N, Hassan A. Experimentally promising antischistosomal drugs: a review of some drug candidates not reaching the clinical use. Parasitol Res. 2009;105(4):899–906. doi: 10.1007/s00436-009-1546-2. pmid:19588166
[4]  Cioli D, Pica-Mattoccia L, Basso A, Guidi A. Schistosomiasis control: praziquantel forever? Mol Biochem Parasitol. 2014;195(1):23–9. doi: 10.1016/j.molbiopara.2014.06.002. pmid:24955523
[5]  Caffrey CR. Schistosomiasis and its treatment. Future Med Chem. 2015;7(6):675–6. doi: 10.4155/fmc.15.27. pmid:25996057
[6]  Thetiot-Laurent SA, Boissier J, Robert A, Meunier B. Schistosomiasis chemotherapy. Angew Chem Int Ed Engl. 2013;52(31):7936–56. doi: 10.1002/anie.201208390. pmid:23813602
[7]  Valentim CL, Cioli D, Chevalier FD, Cao X, Taylor AB, Holloway SP, et al. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science. 2013;342(6164):1385–9. doi: 10.1126/science.1243106. pmid:24263136
[8]  Wang W, Wang L, Liang YS. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. Parasitol Res. 2012;111(5):1871–7. doi: 10.1007/s00436-012-3151-z. pmid:23052781
[9]  Aragon AD, Imani RA, Blackburn VR, Cupit PM, Melman SD, Goronga T, et al. Towards an understanding of the mechanism of action of praziquantel. Mol Biochem Parasitol. 2009;164(1):57–65. doi: 10.1016/j.molbiopara.2008.11.007. pmid:19100294
[10]  Doenhoff MJ, Cioli D, Utzinger J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis. 2008;21(6):659–67. doi: 10.1097/QCO.0b013e328318978f. pmid:18978535
[11]  Caffrey CR, Secor WE. Schistosomiasis: from drug deployment to drug development. Curr Opin Infect Dis. 2011;24(5):410–7. doi: 10.1097/QCO.0b013e328349156f. pmid:21734570
[12]  Olliaro P, Delgado-Romero P, Keiser J. The little we know about the pharmacokinetics and pharmacodynamics of praziquantel (racemate and R-enantiomer). J Antimicrob Chemother. 2014;69(4):863–70. doi: 10.1093/jac/dkt491. pmid:24390933
[13]  Buhring KU, Diekman HW, Muller H, Garbe A, Nowak H. Metabolism of praziquantel in man. Eur J Drug Metab Pharmacokinet. 1978;3:179–90. doi: 10.1007/bf03189504
[14]  Andrews P, Thomas H, Pohlke R, Seubert J. Praziquantel. Med Res Rev. 1983;3(2):147–200. pmid:6408323 doi: 10.1002/med.2610030204
[15]  Sabah AA, Fletcher C, Webbe G, Doenhoff MJ. Schistosoma mansoni: chemotherapy of infections of different ages. Exp Parasitol. 1986;61(3):294–303. pmid:3086114 doi: 10.1016/0014-4894(86)90184-0
[16]  Xiao SH, Yue WJ, Yang YQ, You JQ. Susceptibility of Schistosoma japonicum to different developmental stages to praziquantel. Chin Med J (Engl). 1987;100(9):759–68.
[17]  Meyer T, Sekljic H, Fuchs S, Bothe H, Schollmeyer D, Miculka C. Taste, a new incentive to switch to (R)-praziquantel in schistosomiasis treatment. PLoS Negl Trop Dis. 2009;3(1):e357. doi: 10.1371/journal.pntd.0000357. pmid:19159015
[18]  Geary TG, Sakanari J, Caffrey CR. Anthelmintic drug discovery: into the future. J Parasitol. 2015;101(2):125–33. doi: 10.1645/14-703.1. pmid:25584662
[19]  Neves BJ, Andrade CH, Cravo PV. Natural products as leads in schistosome drug discovery. Molecules. 2015;20(2):1872–903. doi: 10.3390/molecules20021872. pmid:25625682
[20]  Rojo-Arreola L, Long T, Asarnow D, Suzuki BM, Singh R, Caffrey CR. Chemical and genetic validation of the statin drug target to treat the helminth disease, schistosomiasis. PLoS ONE. 2014;9(1):e87594. doi: 10.1371/journal.pone.0087594. pmid:24489942
[21]  Fonseca NC, da Cruz LF, da Silva Villela F, do Nascimento Pereira GA, de Siqueira-Neto JL, Kellar D, et al. Synthesis of a Sugar-Based Thiosemicarbazone Series and Structure-Activity Relationship versus the Parasite Cysteine Proteases Rhodesain, Cruzain, and Schistosoma mansoni Cathepsin B1. Antimicrob Agents Chemother. 2015;59(5):2666–77. doi: 10.1128/AAC.04601-14. pmid:25712353
[22]  Kaiser M, Maes L, Tadoori LP, Spangenberg T, Ioset JR. Repurposing of the Open Access Malaria Box for Kinetoplastid Diseases Identifies Novel Active Scaffolds against Trypanosomatids. J Biomol Screen. 2015;20(5):634–45. doi: 10.1177/1087057115569155. pmid:25690568
[23]  Patel G, Roncal NE, Lee PJ, Leed SE, Erath J, Rodriguez A, et al. Repurposing human Aurora kinase inhibitors as leads for anti-protozoan drug discovery. MedChemComm. 2014;5(5):655–8. pmid:24910766 doi: 10.1039/c4md00045e
[24]  Morel M, Vanderstraete M, Cailliau K, Lescuyer A, Lancelot J, Dissous C. Compound library screening identified Akt/PKB kinase pathway inhibitors as potential key molecules for the development of new chemotherapeutics against schistosomiasis. Int J Parasitol Drugs Drug Resist. 2014;4(3):256–66. doi: 10.1016/j.ijpddr.2014.09.004. pmid:25516836
[25]  Chong CR, Chen X, Shi L, Liu JO, Sullivan DJ, Jr. A clinical drug library screen identifies astemizole as an antimalarial agent. Nat Chem Biol. 2006;2(8):415–6. pmid:16816845 doi: 10.1038/nchembio806
[26]  Andrade LF, Nahum LA, Avelar LG, Silva LL, Zerlotini A, Ruiz JC, et al. Eukaryotic protein kinases (ePKs) of the helminth parasite Schistosoma mansoni. BMC Genomics. 2011;12:215. doi: 10.1186/1471-2164-12-215. pmid:21548963
[27]  Doerig C, Grevelding CG. Targeting kinases in Plasmodium and Schistosoma: Same goals, different challenges. Biochim Biophys Acta. 2015. doi: 10.1016/j.bbapap.2015.03.002
[28]  Beckmann S, Leutner S, Gouignard N, Dissous C, Grevelding CG. Protein kinases as potential targets for novel anti-schistosomal strategies. Curr Pharm Des. 2012;18(24):3579–94. pmid:22607148
[29]  Guidi A, Mansour NR, Paveley RA, Carruthers IM, Besnard J, Hopkins AL, et al. Application of RNAi to Genomic Drug Target Validation in Schistosomes. PLoS Negl Trop Dis. 2015;9(5):e0003801. doi: 10.1371/journal.pntd.0003801. pmid:25992548
[30]  Strebhardt K, Becker S, Matthess Y. Thoughts on the current assessment of Polo-like kinase inhibitor drug discovery. Expert Opin Drug Discov. 2015;10(1):1–8. doi: 10.1517/17460441.2015.962510. pmid:25263688
[31]  Garuti L, Roberti M, Bottegoni G. Polo-like kinases inhibitors. Curr Med Chem. 2012;19(23):3937–48. pmid:22709006 doi: 10.2174/092986712802002455
[32]  Gjertsen BT, Schoffski P. Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy. Leukemia. 2015;29(1):11–9. doi: 10.1038/leu.2014.222. pmid:25027517
[33]  Lenart P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, Hoffmann M, et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol. 2007;17(4):304–15. pmid:17291761 doi: 10.1016/j.cub.2006.12.046
[34]  Steegmaier M, Hoffmann M, Baum A, Lenart P, Petronczki M, Krssak M, et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol. 2007;17(4):316–22. pmid:17291758 doi: 10.1016/j.cub.2006.12.037
[35]  Yuan J, Sanhaji M, Kramer A, Reindl W, Hofmann M, Kreis NN, et al. Polo-box domain inhibitor poloxin activates the spindle assembly checkpoint and inhibits tumor growth in vivo. Am J Pathol. 2011;179(4):2091–9. doi: 10.1016/j.ajpath.2011.06.031. pmid:21839059
[36]  Reindl W, Yuan J, Kramer A, Strebhardt K, Berg T. A pan-specific inhibitor of the polo-box domains of polo-like kinases arrests cancer cells in mitosis. Chembiochem. 2009;10(7):1145–8. doi: 10.1002/cbic.200900059. pmid:19350612
[37]  Long T, Vanderstraete M, Cailliau K, Morel M, Lescuyer A, Gouignard N, et al. SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis. PLoS ONE. 2012;7(6):e40045. doi: 10.1371/journal.pone.0040045. pmid:22768216
[38]  Dissous C, Grevelding CG, Long T. Schistosoma mansoni Polo-like kinases and their function in control of mitosis and parasite reproduction. An Acad Bras Cienc. 2011;83(2):627–35. pmid:21670883 doi: 10.1590/s0001-37652011000200022
[39]  Long T, Cailliau K, Beckmann S, Browaeys E, Trolet J, Grevelding CG, et al. Schistosoma mansoni Polo-like kinase 1: A mitotic kinase with key functions in parasite reproduction. Int J Parasitol. 2010;40(9):1075–86. doi: 10.1016/j.ijpara.2010.03.002. pmid:20350550
[40]  Archambault V, Lepine G, Kachaner D. Understanding the Polo Kinase machine. Oncogene. 2015. doi: 10.1038/onc.2014.451
[41]  Archambault V, Glover DM. Yeast Polo-like kinase substrates are nailed with the right tools. Genome Biol. 2008;9(1):203. doi: 10.1186/gb-2008-9-1-203. pmid:18254925
[42]  Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol. 2009;10(4):265–75. doi: 10.1038/nrm2653. pmid:19305416
[43]  Barr FA, Sillje HH, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol. 2004;5(6):429–40. pmid:15173822 doi: 10.1038/nrm1401
[44]  Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol. 2014;15(7):433–52. doi: 10.1038/nrm3819. pmid:24954208
[45]  Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov. 2010;9(8):643–60. doi: 10.1038/nrd3184. pmid:20671765
[46]  de Carcer G, Manning G, Malumbres M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell cycle. 2011;10(14):2255–62. pmid:21654194 doi: 10.4161/cc.10.14.16494
[47]  Cheng L, Wang C, Jing J. Polo-like kinase 1 as a potential therapeutic target for osteosarcoma. Curr Pharm Des. 2015;21(10):1347–50. pmid:25345614 doi: 10.2174/1381612820999141029162811
[48]  Craig SN, Wyatt MD, McInnes C. Current assessment of polo-like kinases as anti-tumor drug targets. Expert Opin Drug Discov. 2014;9(7):773–89. doi: 10.1517/17460441.2014.918100. pmid:24819909
[49]  Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I. Polo-like kinases (Plks) and cancer. Oncogene. 2005;24(2):287–91. pmid:15640844 doi: 10.1038/sj.onc.1208272
[50]  Elkins JM, Fedele V, Szklarz M, Abdul Azeez KR, Salah E, Mikolajczyk J, et al. Nat Biotechnol. 2015 Oct 26. doi: 10.1038/nbt.3374
[51]  Emmitte KA, Andrews CW, Badiang JG, Davis-Ward RG, Dickson HD, Drewry DH, et al. Discovery of thiophene inhibitors of polo-like kinase. Bioorg Med Chem Lett. 2009;19(3):1018–21. doi: 10.1016/j.bmcl.2008.11.041. pmid:19097784
[52]  Emmitte KA, Adjabeng GM, Andrews CW, Alberti JG, Bambal R, Chamberlain SD, et al. Design of potent thiophene inhibitors of polo-like kinase 1 with improved solubility and reduced protein binding. Bioorg Med Chem Lett. 2009;19(6):1694–7. doi: 10.1016/j.bmcl.2009.01.094. pmid:19237286
[53]  Rheault TR, Donaldson KH, Badiang-Alberti JG, Davis-Ward RG, Andrews CW, Bambal R, et al. Heteroaryl-linked 5-(1H-benzimidazol-1-yl)-2-thiophenecarboxamides: potent inhibitors of polo-like kinase 1 (PLK1) with improved drug-like properties. Bioorg Med Chem Lett. 2010;20(15):4587–92. doi: 10.1016/j.bmcl.2010.06.009. pmid:20594842
[54]  Abdulla MH, Lim KC, Sajid M, McKerrow JH, Caffrey CR. Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med. 2007;4(1):e14. pmid:17214506 doi: 10.1371/journal.pmed.0040014
[55]  Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, Xu F, et al. Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening. PLoS Negl Trop Dis. 2009;3(7):e478. doi: 10.1371/journal.pntd.0000478. pmid:19597541
[56]  Colley DG, Wikel SK. Schistosoma mansoni: simplified method for the production of schistosomules. Exp Parasitol. 1974;35(1):44–51. pmid:4815018 doi: 10.1016/0014-4894(74)90005-8
[57]  Stefanic S, Dvorak J, Horn M, Braschi S, Sojka D, Ruelas DS, et al. RNA interference in Schistosoma mansoni schistosomula: selectivity, sensitivity and operation for larger-scale screening. PLoS Negl Trop Dis. 2010;4(10):e850. doi: 10.1371/journal.pntd.0000850. pmid:20976050
[58]  Duvall RH, DeWitt WB. An improved perfusion technique for recovering adult schistosomes from laboratory animals. Am J Trop Med Hyg. 1967;16(4):483–6. pmid:4952149
[59]  Basch PF. Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol. 1981;67(2):179–85. pmid:7241277 doi: 10.2307/3280632
[60]  Dvorak J, Mashiyama ST, Sajid M, Braschi S, Delcroix M, Schneider EL, et al. SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis. 2009;3(6):e449. doi: 10.1371/journal.pntd.0000449. pmid:19488406
[61]  Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. pmid:11846609 doi: 10.1006/meth.2001.1262
[62]  Beckmann S, Long T, Scheld C, Geyer R, Caffrey CR, Grevelding CG. Serum albumin and alpha-1 acid glycoprotein impede the killing of Schistosoma mansoni by the tyrosine kinase inhibitor Imatinib. Int J Parasitol Drugs Drug Resist. 2014;4(3):287–95. doi: 10.1016/j.ijpddr.2014.07.005. pmid:25516839
[63]  Singh R, Pittas, M., I. Heskia, I., Xu, F., McKerrow, J. H., Caffrey, C. R. Automated image-based phenotypic screening for high-throughput drug discovery. IEEE Symposium on Computer-Based Medical Systems 2–5 August 2009 Albuquerque, NM 2009. p. 1–8.
[64]  Asarnow D, Singh R, editors. Segmenting the etiological agent of schistosomiasis for high-content screening. IEEE Transactions on Medical Imaging; Vol. 32, No. 6, pp. 1007–10018, 2013 doi: 10.1109/TMI.2013.2247412. pmid:23428618
[65]  Moody-Davis A, Mennillo L., Singh R. Region-Based Segmentation of Parasites for High-throughput Screening. International Symposium on Visual Computing (ISVC): Lecture Notes in Computer Science. Vol. 6938, pp. 44–54 Springer; 2011.
[66]  Saha U, Singh R, editors. Vision-based tracking of complex macroparasites for high-content phenotypic drug screening. Proceedings of the International Symposium on Visual Computing, Lecture Notes in Computer Science; Vol. 7432, pp. 104–114, 2012: Springer.
[67]  Lee H, Moody-Davis A, Saha U, Suzuki BM, Asarnow D, Chen S, et al. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis. BMC Genomics. 2012;13 Suppl 1:S4. doi: 10.1186/1471-2164-13-s1-s4
[68]  Paveley RA, Mansour NR, Hallyburton I, Bleicher LS, Benn AE, Mikic I, et al. Whole organism high-content screening by label-free, image-based Bayesian classification for parasitic diseases. PLoS Negl Trop Dis. 2012;6(7):e1762. doi: 10.1371/journal.pntd.0001762. pmid:22860151
[69]  Asarnow D, Rojo-Arreola L, Suzuki BM, Caffrey CR, Singh R. The QDREC web server: determining dose-response characteristics of complex macroparasites in phenotypic drug screens. Bioinformatics. 2015;31(9):1515–8. doi: 10.1093/bioinformatics/btu831. pmid:25540182
[70]  Glaser J, Schurigt U, Suzuki BM, Caffrey CR, Holzgrabe U. Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl and Thymyl Cinnamate Induce Cytoplasmic Vacuoles and Death in Schistosomula of Schistosoma mansoni. Molecules. 2015;20(6):10873–83. doi: 10.3390/molecules200610873. pmid:26076109
[71]  Jain R, Dubes RC. Algorithms for Clustering Data. Englewood Cliffs, New Jersey: Prentice Hall; 1988.
[72]  Rudolph D, Impagnatiello MA, Blaukopf C, Sommer C, Gerlich DW, Roth M, et al. Efficacy and mechanism of action of volasertib, a potent and selective inhibitor of Polo-like kinases, in preclinical models of acute myeloid leukemia. J Pharmacol Exp Ther. 2015;352(3):579–89. doi: 10.1124/jpet.114.221150. pmid:25576074
[73]  Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J, et al. BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res. 2009;15(9):3094–102. doi: 10.1158/1078-0432.CCR-08-2445. pmid:19383823
[74]  Janning M, Fiedler W. Volasertib for the treatment of acute myeloid leukemia: a review of preclinical and clinical development. Future Oncol. 2014;10(7):1157–65. doi: 10.2217/fon.14.53. pmid:24947257
[75]  Gilmartin AG, Bleam MR, Richter MC, Erskine SG, Kruger RG, Madden L, et al. Distinct concentration-dependent effects of the polo-like kinase 1-specific inhibitor GSK461364A, including differential effect on apoptosis. Cancer Res. 2009;69(17):6969–77. doi: 10.1158/0008-5472.CAN-09-0945. pmid:19690138
[76]  Degenhardt Y, Greshock J, Laquerre S, Gilmartin AG, Jing J, Richter M, et al. Sensitivity of cancer cells to Plk1 inhibitor GSK461364A is associated with loss of p53 function and chromosome instability. Mol Cancer Ther. 2010;9(7):2079–89. doi: 10.1158/1535-7163.MCT-10-0095. pmid:20571075
[77]  Reindl W, Yuan J, Kramer A, Strebhardt K, Berg T. Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions. Chem Biol. 2008;15(5):459–66. doi: 10.1016/j.chembiol.2008.03.013. pmid:18482698
[78]  Ramirez B, Bickle Q., Yousif F., Fakorede F., Mouries M-A., Nwaka S.. Schistosomes: challenges in compound screening. Expert Opin Drug Discov. 2007;2:S53–S61. doi: 10.1517/17460441.2.S1.S53. pmid:23489033
[79]  Ingram-Sieber K, Cowan N, Panic G, Vargas M, Mansour NR, Bickle QD, et al. Orally active antischistosomal early leads identified from the open access malaria box. PLoS Negl Trop Dis. 2014;8(1):e2610. doi: 10.1371/journal.pntd.0002610. pmid:24416463
[80]  Swierczewski BE, Davies SJ. A schistosome cAMP-dependent protein kinase catalytic subunit Is essential for parasite viability. PLoS Negl Trop Dis. 2009;3(8):e505. doi: 10.1371/journal.pntd.0000505. pmid:19707280
[81]  Kuntz AN, Davioud-Charvet E, Sayed AA, Califf LL, Dessolin J, Arner ES, et al. Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med. 2007;4(6):e206. pmid:17579510 doi: 10.1371/journal.pmed.0040206
[82]  Lansing TJ, McConnell RT, Duckett DR, Spehar GM, Knick VB, Hassler DF, et al. In vitro biological activity of a novel small-molecule inhibitor of polo-like kinase 1. Mol Cancer Ther. 2007;6(2):450–9. pmid:17267659 doi: 10.1158/1535-7163.mct-06-0543
[83]  Olmos D, Barker D, Sharma R, Brunetto AT, Yap TA, Taegtmeyer AB, et al. Phase I study of GSK461364, a specific and competitive Polo-like kinase 1 inhibitor, in patients with advanced solid malignancies. Clin Cancer Res. 2011;17(10):3420–30. doi: 10.1158/1078-0432.CCR-10-2946. pmid:21459796
[84]  Ross-Macdonald P. Drug discovery without a molecular target: the road less traveled. Expert Rev Mol Diagn. 2007;7(1):1–4. pmid:17187477 doi: 10.1586/14737159.7.1.1
[85]  Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–19. doi: 10.1038/nrd3480. pmid:21701501
[86]  Eder J, Sedrani R, Wiesmann C. The discovery of first-in-class drugs: origins and evolution. Nat Rev Drug Discov. 2014;13(8):577–87. doi: 10.1038/nrd4336. pmid:25033734
[87]  Lee JA, Uhlik MT, Moxham CM, Tomandl D, Sall DJ. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Chem. 2012;55(10):4527–38. doi: 10.1021/jm201649s. pmid:22409666
[88]  Caffrey CR, editor. Parasitic Helminths: Targets, Screens, Drugs and Vaccines. Weinheim: Wiley-Blackwell; 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133