[1] | Ridley DS, Jopling WH (1966) Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis 34: 255–273. pmid:5950347
|
[2] | Ridley DS (1974) Histological classification and the immunological spectrum of leprosy. Bull World Health Orga 51: 451–465.
|
[3] | Kaleab B, Wondimu A, Likassa R, Woldehawariat N, Ivanyi J (1995) Sustained T-cell reactivity to Mycobacterium tuberculosis specific antigens in 'split-anergic' leprosy. Lepr Rev 66:19–25. pmid:7537350 doi: 10.5935/0305-7518.19950003
|
[4] | Modlin RL (1994) Th1-Th2 paradigm: insights from leprosy. J Invest Dermatol 102: 828–832. pmid:8006444 doi: 10.1111/1523-1747.ep12381958
|
[5] | Sengupta U (2000) Immunopathology of leprosy—current status. Indian J Lepr 72: 381–391. pmid:11105278
|
[6] | Modlin RL (2002) Learning from Leprosy: Insights into Contemporary Immunology from an Ancient Disease. Skin Pharmacol Appl Skin Physiol 15: 1–6. doi: 10.1159/000058177
|
[7] | Modlin RL, Mehra V, Wong L, Fujimiya Y, Chang WC, et al. (1986) Suppressor T lymphocytes from lepromatous leprosy skin lesions. J Immunol 137: 2831–2834. pmid:2944966
|
[8] | Ottenhoff TH, Elferink DG, Klatser PR, de Vries RR (1986) Cloned suppressor T cells from a lepromatous leprosy patient suppress Mycobacterium leprae reactive helper T cells. Nature 322: 462–464. pmid:2426597 doi: 10.1038/322462a0
|
[9] | Sharma PK, Saha PK, Singh A, Sharma SK, Ghosh B, et al. (2009) FoxP3+ regulatory T cells suppress effector T-cell function at pathologic site in miliary tuberculosis. Am J Respir Crit Care Med 179: 1061–1070. doi: 10.1164/rccm.200804-529OC. pmid:19246720
|
[10] | Mendez S, Reckling SK, Piccirillo CA, Sacks D, Belkaid Y (2004) Role for CD4(+) CD25(+) regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity. J Exp Med 200: 201–210. pmid:15263027 doi: 10.1084/jem.20040298
|
[11] | Rai AK, Thakur CP, Singh A, Seth T, Srivastava SK, et al. (2012) Regulatory T cells Suppress T cell Activation at the Pathologic Site of Human Visceral Leishmaniasis. PLoS One 7: e44728. doi: 10.1371/journal.pone.0031551
|
[12] | O’Garra A, Vieira PL, Vieira P, Goldfeld AE (2004) IL?10?producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 114: 1372–1378. pmid:15545984 doi: 10.1172/jci23215
|
[13] | Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6: 353–360. pmid:15785761 doi: 10.1038/ni1181
|
[14] | Belkaid Y (2007) Regulatory T cells and infection: dangerous necessity. Nat Rev Immunol 7: 875–888. pmid:17948021 doi: 10.1038/nri2189
|
[15] | Hawrylowicz CM, O’Garra A (2005) Potential role of interleukin?10?secreting regulatory T cells in allergy and asthma. Nature Rev Immunol 5: 271–283. doi: 10.1038/nri1589
|
[16] | Annacker O, Asseman C, Read S, Powrie F (2003) Interleukin?10 in the regulation of T cell-induced colitis. J Autoimmun 20: 277–279. pmid:12791312 doi: 10.1016/s0896-8411(03)00045-3
|
[17] | Saini C, Ramesh V, Nath I (2014) Increase in TGF-β Secreting CD4+CD25+ FOXP3+ T Regulatory Cells in Anergic Lepromatous Leprosy Patients. PLoS Negl Trop Dis 8: e2639. doi: 10.1371/journal.pntd.0002639. pmid:24454972
|
[18] | Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236: 219–242. doi: 10.1111/j.1600-065X.2010.00923.x. pmid:20636820
|
[19] | Carter L, Fouser LA, Jussif J, Fitz L, Deng B, et al. (2002) PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur. J. Immunol 32: 634–643. pmid:11857337 doi: 10.1002/1521-4141(200203)32:3<634::aid-immu634>3.0.co;2-9
|
[20] | Driessens G, Kline J, Gajewski TF (2009) Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev 229: 126–144. doi: 10.1111/j.1600-065X.2009.00771.x. pmid:19426219
|
[21] | Virgin HW, Wherry EJ, Ahmed R (2009) Redefining chronic viral infection. Cell 138: 30–50. doi: 10.1016/j.cell.2009.06.036. pmid:19596234
|
[22] | Ogino H, Nakamura K, Ihara E, Akiho H, Takayanagi R (2011) CD4+CD25+ regulatory T cells suppress Th17-responses in an experimental colitis model. Dig Dis Sci 56: 376–386. doi: 10.1007/s10620-010-1286-2. pmid:20521112
|
[23] | Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145. pmid:17290272 doi: 10.1038/nm1551
|
[24] | Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27: 485–517. doi: 10.1146/annurev.immunol.021908.132710. pmid:19132915
|
[25] | Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453: 1051–1057. doi: 10.1038/nature07036. pmid:18563156
|
[26] | Ahern PP, Izcue A, Maloy KJ, Powrie F (2008) The interleukin-23 axis in intestinal inflammation. Immunol Rev 226: 147–159. doi: 10.1111/j.1600-065X.2008.00705.x. pmid:19161422
|
[27] | Saini C, Ramesh V, Nath I (2013) CD4+ Th17 Cells Discriminate Clinical Types and Constitute a Third Subset of Non Th1, Non Th2 T Cells in Human Leprosy. PLoS Negl Trop Dis 9: e2338. doi: 10.1371/journal.pntd.0002338
|
[28] | Mondal S, Martinson JA, Ghosh S, Watson R, Pahan K (2012) Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline. PLoS One 7: e51869. doi: 10.1371/journal.pone.0051869. pmid:23284794
|
[29] | Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164. pmid:7636184 doi: 10.3410/f.1002182.10858
|
[30] | Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, et al. (2001) Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182: 18–32. pmid:11722621 doi: 10.1034/j.1600-065x.2001.1820102.x
|
[31] | Sanchez AM, Yang Y (2011) The role of natural regulatory T cells in infection. Immunol Res 49: 124–134. doi: 10.1007/s12026-010-8176-8. pmid:21116872
|
[32] | Shevach EM, DiPaolo RA, Andersson J, Zhao DM, Stephens GL, et al. (2006) The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev 212: 60–73. pmid:16903906 doi: 10.1111/j.0105-2896.2006.00415.x
|
[33] | Mills KH (2004) Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 4: 841–855. pmid:15516964 doi: 10.1038/nri1485
|
[34] | Bobosha K, Wilson L, van Meijgaarden KE, Bekele Y, Zewdie M, et al. (2014) T-Cell Regulation in Lepromatous Leprosy. PLoS Negl Trop Dis 8: e2773. doi: 10.1371/journal.pntd.0002773. pmid:24722473
|
[35] | Iellema A, Mariania M, Langa R, Recaldeb H, Panina-Bordignona P, et al. (2001) Unique Chemotactic Response Profile and Specific Expression of Chemokine Receptors Ccr4 and Ccr8 by Cd4+Cd25+ Regulatory T Cells. J Exp Med 194: 847–854. pmid:11560999 doi: 10.1084/jem.194.6.847
|
[36] | Mitra DK, Joshi B, Dinda AK, Rai AK, Girdhar BK, et al. (2009) Induction of lepromin reactivity in cured lepromatous leprosy patients: impaired chemokine response dissociates protective immunity from delayed type hypersensitivity. Microbes Infect 11: 1122–1130. doi: 10.1016/j.micinf.2009.08.006. pmid:19703581
|
[37] | Palermo ML, Pagliari C, Trindade MA, Yamashitafuji TM, Duarte AJ, et al. (2012) Increased Expression of Regulatory T Cells and Down-Regulatory Molecules in Lepromatous Leprosy. Am J Trop Med Hyg 86: 878–883. doi: 10.4269/ajtmh.2012.12-0088. pmid:22556091
|
[38] | Fernandes C, Gon?alves HS, Cabral PB, Pinto HC, Pinto MI, et al. (2013) Increased Frequency of CD4 and CD8 Regulatory T Cells in Individuals under 15 Years with Multibacillary Leprosy. PLoS ONE 8: e79072. doi: 10.1371/journal.pone.0079072. pmid:24244424
|
[39] | Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–173. pmid:2523712 doi: 10.1146/annurev.iy.07.040189.001045
|
[40] | Dent LA (2002) For better or worse: common determinants influencing health and disease in parasitic infections, asthma and reproductive biology. J Reprod Immunol 57: 255–272. pmid:12385847 doi: 10.1016/s0165-0378(02)00017-7
|
[41] | Singh VK, Mehrotra S, Agarwal SS (1999) The paradigm of Th1 and Th2 cytokines: its relevance to autoimmunity and allergy. Immunol Res 20: 147–161. pmid:10580639 doi: 10.1007/bf02786470
|
[42] | Stockinger B, Veldhoen M 2007 Differentiation and function of Th17 T cells. Curr Opin Immunol 19: 281–286. pmid:17433650 doi: 10.1016/j.coi.2007.04.005
|
[43] | Eisenstein EM, Williams CB (2009) The Treg/Th17 Cell Balance: A New Paradigm for Autoimmunity. Pediatr Res 65: 26–31. doi: 10.1203/pdr.0b013e31819e76c7
|
[44] | Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, et al. (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443: 350–354. pmid:16921384 doi: 10.1038/nature05115
|
[45] | Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, et al. (2006) PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. J Virol 80: 11398–11403. pmid:16956940 doi: 10.1128/jvi.01177-06
|
[46] | Das S, Suarez G, Beswick EJ, Sierra JC, Graham DY, et al. (2006) Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol 176: 3000–3009. pmid:16493058 doi: 10.4049/jimmunol.176.5.3000
|
[47] | Keir ME, Freeman GJ, Sharpe AH (2007) PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues. J Immunol 179: 5064–5070. pmid:17911591 doi: 10.4049/jimmunol.179.8.5064
|
[48] | Dong HD, Zhu GF, Tamada K, Chen LP (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5: 1365–1369. pmid:10581077 doi: 10.1016/s0887-7963(00)80157-1
|
[49] | Jurado JO, Alvarez IB, Pasquinelli V, Martínez GJ, Quiroga MF, et al. (2008) Programmed Death (PD)-1:PD-Ligand 1/PD-Ligand 2 Pathway Inhibits T Cell Effector Functions during Human Tuberculosis. J Immunol 181: 116–125. pmid:18566376 doi: 10.4049/jimmunol.181.1.116
|
[50] | Singh A, Mohan A, Dey AB, Mitra DK (2013) Inhibiting PD-1 pathway rescues M. tuberculosis specific IFN-γ producing T cells from apoptosis among pulmonary tuberculosis patients. J Infect Dis 208: 603–615. doi: 10.1093/infdis/jit206
|