Background The initial endemicity (pre-control prevalence) of onchocerciasis has been shown to be an important determinant of the feasibility of elimination by mass ivermectin distribution. We present the first geostatistical map of microfilarial prevalence in the former Onchocerciasis Control Programme in West Africa (OCP) before commencement of antivectorial and antiparasitic interventions. Methods and Findings Pre-control microfilarial prevalence data from 737 villages across the 11 constituent countries in the OCP epidemiological database were used as ground-truth data. These 737 data points, plus a set of statistically selected environmental covariates, were used in a Bayesian model-based geostatistical (B-MBG) approach to generate a continuous surface (at pixel resolution of 5 km x 5km) of microfilarial prevalence in West Africa prior to the commencement of the OCP. Uncertainty in model predictions was measured using a suite of validation statistics, performed on bootstrap samples of held-out validation data. The mean Pearson’s correlation between observed and estimated prevalence at validation locations was 0.693; the mean prediction error (average difference between observed and estimated values) was 0.77%, and the mean absolute prediction error (average magnitude of difference between observed and estimated values) was 12.2%. Within OCP boundaries, 17.8 million people were deemed to have been at risk, 7.55 million to have been infected, and mean microfilarial prevalence to have been 45% (range: 2–90%) in 1975. Conclusions and Significance This is the first map of initial onchocerciasis prevalence in West Africa using B-MBG. Important environmental predictors of infection prevalence were identified and used in a model out-performing those without spatial random effects or environmental covariates. Results may be compared with recent epidemiological mapping efforts to find areas of persisting transmission. These methods may be extended to areas where data are sparse, and may be used to help inform the feasibility of elimination with current and novel tools.
References
[1]
London Declaration on Neglected Tropical Diseases. Uniting to combat neglected tropical diseases: Ending the neglect and reaching 2020 goals. 2012. []. Accessed 30 November 2015.
[2]
World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases–A roadmap for implementation. 2012. []. Accessed 30 November 2015.
[3]
Kim YE, Remme JH, Steinmann P, Stolk WA, Roungou JB, Tediosi F. Control, elimination, and eradication of river blindness: scenarios, timelines, and ivermectin treatment needs in Africa. PLoS Negl Trop Dis. 2015;9(4): e0003664. (Correction in PLoS Negl Trop Dis. 2015;9(5): e0003777). doi: 10.1371/journal.pntd.0003664. pmid:25860569
Murdoch ME, Hay RJ, Mackenzie CD, Williams JF, Ghalib HW, Cousens S, et al. A clinical classification and grading system of the cutaneous changes in onchocerciasis. Br J Dermatol. 1993;129(3): 260–269. pmid:8286222 doi: 10.1111/j.1365-2133.1993.tb11844.x
[6]
Little MP, Breitling LP, Basá?ez MG, Alley ES, Boatin BA.Association between microfilarial load and excess mortality in onchocerciasis: an epidemiological study. Lancet. 2004;363(9420): 1514–1521. pmid:15135599 doi: 10.1016/s0140-6736(04)16151-5
[7]
Walker M, Little MP, Wagner KS, Soumbey-Alley EW, Boatin BA, Basá?ez MG. Density-dependent mortality of the human host in onchocerciasis: relationships between microfilarial load and excess mortality. PLoS Negl Trop Dis. 2012;6(3): e1578. doi: 10.1371/journal.pntd.0001578. pmid:22479660
[8]
Basá?ez MG, Pion SDS, Churcher TS, Breitling LP, Little MP, Boussinesq M. River blindness: a success story under threat? PLoS Med. 2006;3(9): e371. pmid:17002504 doi: 10.1371/journal.pmed.0030371
[9]
Boatin B. The Onchocerciasis Control Programme in West Africa (OCP). Ann Trop Med Parasitol. 2008;102 (Suppl 1): 13–17. doi: 10.1179/136485908X337427. pmid:18718148
[10]
Hougard JM, Alley ES, Yaméogo L, Dadzie KY, Boatin BA.Eliminating onchocerciasis after 14 years of vector control: a proved strategy. J Infect Dis. 2001;184(4): 497–503. pmid:11471108 doi: 10.1086/322789
[11]
Boatin BA.The current state of the Onchocerciasis Control Programme in West Africa. Trop Doct. 2003;33(4): 209–214. pmid:14620423
[12]
Hougard JM, Yaméogo L, Sékétéli A, Boatin B, Dadzie KY. Twenty-two years of blackfly control in the onchocerciasis control programme in West Africa. Parasitol Today. 1997;13(11): 425–431. pmid:15275144 doi: 10.1016/s0169-4758(97)01145-9
[13]
World Health Organization/African Programme for Onchocerciasis Control. Onchocerciasis control in special intervention zones including Sierra Leone in the OCP area. Joint Programme Committee Report, September 2002. Ouagadougou (Burkina Faso): World Health Organization/African Programme for Onchocerciasis Control; 2002.
[14]
Diawara L, Traoré MO, Badji A, Bissan Y, Doumbia K, Goita SF, et al. Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis. 2009;3(7): e497. doi: 10.1371/journal.pntd.0000497. pmid:19621091
[15]
Traore MO, Sarr MD, Badji A, Bissan Y, Diawara L, Doumbia K, et al. Proof-of-principle of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: final results of a study in Mali and Senegal. PLoS Negl Trop Dis. 2012;6(9): e1825. doi: 10.1371/journal.pntd.0001825. pmid:23029586
[16]
Tekle A, Elhassan E, Isiyaku S, Amazigo U, Bush S, Noma M, et al. Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: first evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control. Parasit Vectors. 2012;5(1): 28. doi: 10.1186/1756-3305-5-28
[17]
Winnen M, Plaisier AP, Alley ES, Nagelkerke NJD, van Oortmarssen G, Boatin BA, et al. Can ivermectin mass treatments eliminate onchocerciasis in Africa? Bull World Health Organ. 2002;80(5): 384–390. pmid:12077614
[18]
Turner HC, Churcher TS, Walker M, Osei-Atweneboana MY, Prichard RK, Basá?ez MG. Uncertainty surrounding projections of the long-term impact of ivermectin treatment for human onchocerciasis. PLoS Negl Trop Dis. 2013;7(4): e2169. doi: 10.1371/journal.pntd.0002169. pmid:23634234
[19]
Remme J, Ba O, Dadzie KY, Karam M.A force-of-infection model for onchocerciasis and its applications in the epidemiological evaluation of the Onchocerciasis Control Programme in the Volta River basin area. Bull World Health Organ. 1986;64: 667–681. pmid:3492300
[20]
Basá?ez MG, Collins RC, Porter CH, Little MP, Brandling-Bennett D. Transmission intensity and the patterns of Onchocerca volvulus infection in human communities. Am J Trop Med Hyg. 2002;67(6): 669–679. pmid:12518860
[21]
Duerr HP, Leary CC, Eichner M. High infection rates at low transmission potentials in West African onchocerciasis. Int J Parasitol. 2006;36(13): 1367–1372. pmid:16979644 doi: 10.1016/j.ijpara.2006.08.001
[22]
Turner HC, Walker M, Churcher TS, Osei-Atweneboana MY, Biritwum NK, Hopkins A, et al. Reaching the London Declaration on Neglected Tropical Diseases goals for onchocerciasis: an economic evaluation of increasing the frequency of ivermectin treatment in Africa. Clin Infect Dis. 2014;59(7): 923–932. doi: 10.1093/cid/ciu467. pmid:24944228
[23]
African Programme for Onchocerciasis Control. Conceptual and operational framework of onchocerciasis elimination with ivermectin treatment. World Health Organization: JAF 16.6 (II). 2010. []. Accessed 30 November 2015.
[24]
Taylor MJ, Awadzi K, Basá?ez MG, Biritwum N, Boakye D, Boatin B, et al. Onchocerciasis control: vision for the future from a Ghanaian perspective. Parasit Vectors. 2009;2(1): 7. doi: 10.1186/1756-3305-2-7. pmid:19154624
[25]
Turner HC, Walker M, Attah SK, Opoku NO, Awadzi K, Kuesel AC, et al. The potential impact of moxidectin on onchocerciasis elimination in Africa: an economic evaluation based on the Phase II clinical trial data. Parasit Vectors. 2015; 19;8: 167. doi: 10.1186/s13071-015-0779-4
[26]
Coffeng LE, Stolk WA, Zouré HGM, Veerman JL, Agblewonu KB, Murdoch ME, et al. African Programme for Onchocerciasis Control 1995–2015: model-estimated health impact and cost. PLoS Negl Trop Dis. 2013;7(1): e2032. doi: 10.1371/journal.pntd.0002032. pmid:23383355
[27]
Diggle PJ, Ribeiro PJ Jr. Model-based Geostatistics. Springer Series in Statistics. New York: Springer; 2007.
[28]
Karagiannis-Voules DA, Scholte RGC, Guimar?es LH, Utzinger J, Vounatsou P. Bayesian geostatistical modeling of leishmaniasis incidence in Brazil. PLoS Negl Trop Dis. 2013;7(5): e2213. doi: 10.1371/journal.pntd.0002213. pmid:23675545
[29]
Brooker S. Spatial epidemiology of human schistosomiasis in Africa: risk models, transmission dynamics and control. Trans R Soc Trop Med Hyg. 2007;101(1): 1–8. pmid:17055547
[30]
Brooker S, Clements AC. Spatial heterogeneity of parasite co-infection: determinants and geostatistical prediction at regional scales. Int J Parasitol. 2009;39(5): 591–597. doi: 10.1016/j.ijpara.2008.10.014. pmid:19073189
[31]
Magalh?es RJ, Clements AC, Patil AP, Gething PW, Brooker S. The applications of model-based geostatistics in helminth epidemiology and control. Adv Parasitol. 2011;74: 267–296. doi: 10.1016/B978-0-12-385897-9.00005-7. pmid:21295680
[32]
Chammartin F, Scholte RGC, Guimar?es LH, Tanner M, Utzinger J, Vounatsou P. Soil-transmitted helminth infection in South America: a systematic review and geostatistical meta-analysis. Lancet Infect Dis. 2013;13(6): 507–518. doi: 10.1016/S1473-3099(13)70071-9. pmid:23562238
[33]
Patil AP, Gething PW, Piel FB, Hay SI. Bayesian geostatistics in health cartography: the perspective of malaria. Trends Parasitol. 2011;27(6): 246–253. doi: 10.1016/j.pt.2011.01.003. pmid:21420361
[34]
Diggle PJ, Thomson MC, Christensen OF, Rowlingson B, Obsomer V, Gardon J, et al. Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty. Ann Trop Med Parasitol. 2007;101(6): 499–509. pmid:17716433 doi: 10.1179/136485907x229121
[35]
Wardrop NA, Atkinson PM, Gething PW, Fèvre EM, Picozzi K, Kakembo AS, et al. Bayesian geostatistical analysis and prediction of Rhodesian human African trypanosomiasis. PLoS Negl Trop Dis. 2010;4(12): e914. doi: 10.1371/journal.pntd.0000914. pmid:21200429
[36]
Slater H, Michael E. Mapping, Bayesian geostatistical analysis and spatial prediction of lymphatic filariasis prevalence in Africa. PLoS One. 2013;8(8): e71574. doi: 10.1371/journal.pone.0071574. pmid:23951194
[37]
Zouré HG, Noma M, Tekle AH, Amazigo UV, Diggle PJ, Giorgi E, et al. The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (2) pre-control endemicity levels and estimated number infected. Parasit Vectors. 2014;7: 326. doi: 10.1186/1756-3305-7-326. pmid:25053392
[38]
Prost A, Thylefors B, Pairault C. Methods of mass epidemiological evaluation of onchocerciasis. Their utilisation in a vector control programme. Geneva: World Health Organization. ONCHO/WP/75.14. 1975.
[39]
Kirkwood B, Smith P, Marshall T, Prost A. Variations in the prevalence and intensity of microfilarial infections by age, sex, place and time in the area of the Onchocerciasis Control Programme. Trans R Soc Trop Med Hyg. 1983;77(6): 857–861. pmid:6665840 doi: 10.1016/0035-9203(83)90307-3
[40]
Moreau JP, Prost A, Prod’hon J. Essai de normalisation de la méthodologie des enquêtes clinico-parasitologiques sur l’onchocercose en Afrique de l’ouest. Méd Trop (Mars). 1978;38(1): 43–51.
[41]
Vajime C, Quillévéré D. The distribution of the Simulium damnosum complex in West Africa with particular reference to the Onchocerciasis Control Programme area. Tropenmed Parasitol. 1978;29(4): 473–481. pmid:741507
[42]
Boakye DA, Back C, Fiasorgbor GK, Sib AP, Coulibaly Y. Sibling species distributions of the Simulium damnosum complex in the west African Onchocerciasis Control Programme area during the decade 1984–93, following intensive larviciding since 1974. Med Vet Entomol. 1998;12(4): 345–358. pmid:9824818 doi: 10.1046/j.1365-2915.1998.00118.x
[43]
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15): 1965–1978. doi: 10.1002/joc.1276
[44]
Danielson JJ. Delineation of drainage basins from 1 km African digital elevation data. In: Pecora Thirteen, Human Interactions with the Environment–Perspectives from Space. Sioux Falls, South Dakota, August 20–22, 1996.
[45]
Verdin KL, Verdin JP. A topological system for delineation and codification of the Earth’s river basins. J Hydrol. 1999; 218(1–2):1–12. doi: 10.1016/s0022-1694(99)00011-6
[46]
Food and Agriculture Organization of the United Nations. FAO GEONETWORK. Rivers of Africa (Derived from HydroSHEDS) (GeoLayer). []. Accessed 30 November 2015.
[47]
Tucker CJ, Pinzon JE, Brown ME. Global Inventory Modeling and Mapping Studies, Normalized Difference Vegetation Index (NDVI), 2.0, Global Land Cover Facility, University of Maryland, College Park, Maryland, 01/07/1981–31/12/1986. 2004.
[48]
Pinzon JE, Brown ME, Tucker CJ. EMD correction of orbital drift artifacts in satellite data stream. In: Huang NE, Shen SSP, editors. Hilbert-Huang Transform and its Applications. Interdisciplinary Mathematical Sciences Volume 5, Singapore: World Scientific Publishing Co. Pte. Ltd.; 2005. pp: 167–186.
[49]
Tucker CJ, Pinzon JE, Brown ME, Slayback D, Pak EW, Mahoney R, et al. An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int J Remote Sens. 2005;26 (20): 4485–4498. doi: 10.1080/01431160500168686
[50]
NASA Land Processes Distributed Active Archive Center (LP DAAC). MODIS MOD13A1. USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. 2001.
[51]
NASA Land Processes Distributed Active Archive Center (LP DAAC). MODIS MOD1A2. USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. 2001.
[52]
NASA Land Processes Distributed Active Archive Center (LP DAAC). MODIS MCD12Q1. USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. 2001.
[53]
Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ. 2010;114(1): 168–182. doi: 10.1016/j.rse.2009.08.016
[54]
White, F. Vegetation of Africa—a descriptive memoir to accompany the Unesco/AETFAT/UNSO vegetation map of Africa; Natural Resources Research Report XX; U. N. Educational, Scientific and Cultural Organization; 7 Place de Fontenoy, 75700 Paris, France; 1983. 356 pp.
[55]
US Geological Survey. Global 30-Arc-Second Elevation Data Set, Sioux Falls, South Dakota. 1996.
[56]
Gesch DB, Larson KS. Techniques for development of global 1-kilometer digital elevation models. In: Pecora Thirteen, Human Interactions with the Environment—Perspectives from Space, 13th, Sioux Falls, South Dakota, August 20–22, 1996, Proceedings. Bethesda, Maryland: American Society of Photogrammetry and Remote Sensing. 1996.
[57]
GLOBE Task Team and others. In: Hastings DA, Dunbar PK, Elphingstone GM, Bootz M, Murakami H, Maruyama H, Masaharu H, Holland P, Payne J, Bryant NA, Logan TL, Muller JP, Schreier G, MacDonald JS, editors. The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, Colorado 80305–3328. 1999.
Christensen OS, Ribeiro PJ Jr. geoRglm: a package for generalised linear spatial models. R News. 2002;2: 26–28.
[60]
R Development Core Team. R: a language and environment for statistical computing, version 3.0.1. The R Development Core Team. R Foundation for Statistical Computing. 2014. []. Accessed 23 June 2014.
[61]
Austin PC, Tu JV. Bootstrap methods for developing predictive models. Am Stat. 2004;58(2): 131–137. doi: 10.1198/0003130043277
[62]
Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures of model complexity and fit. J R Statist Soc B. 2002;64(4): 583–639. doi: 10.1111/1467-9868.00353
[63]
Prost A, Hervouet JP, Thylefors B. [Epidemiologic status of onchocerciasis]. Bull World Health Organ. 1979;57(4): 655–662 [Article in French]. pmid:316743
[64]
Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6(3): e1000048. Erratum in: PLoS Med. 2009;6(10). doi: 10.1371/journal.pmed.1000048. pmid:19323591
[65]
Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10: 378. doi: 10.1186/1475-2875-10-378. pmid:22185615
[66]
Efron B, Tibshirani R. Improvements on cross-validation: the 632+ bootstrap method. J Am Statist Assoc. 1997;92 (438): 548–560. doi: 10.1080/01621459.1997.10474007
[67]
Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. Int J Forecast. 2006;22(4): 679–688. doi: 10.1016/j.ijforecast.2006.03.001
[68]
Gething PW, Noor AM, Gikandi PW, Hay SI, Nixon MS, Snow RW, et al. Developing geostatistical space-time models to predict outpatient treatment burdens from incomplete national data. Geogr Anal. 2008;40: 167–188. pmid:19325928 doi: 10.1111/j.1538-4632.2008.00718.x
[69]
Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). Gridded Population of the World Version 3 (GPWv3): Population Density Grids. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. 2005. []. Accessed 23 June 2015.
[70]
United Nations. World Population Prospects: The 2012 Revision, DVD edition. New York: UN Department of Economic and Social Affairs, Population Division. Highlights and advance tables. 2013. []. Accessed 30 November 2015.
[71]
Center for International Earth Science Information Network (CIESIN), Columbia University; International Food Policy Research Institute (IFPRI); the World Bank; and Centro Internacional de Agricultura Tropical (CIAT). Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Urban Extents Grid. Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. 2011. []. Accessed 30 November 2015.
[72]
Frentzel-Beyme R. The geographical distribution of Onchocerca volvulus infection in Liberia. Tropenmed Parasitol. 1975;26(1): 70–87. pmid:1145727
[73]
Coffeng LE, Pion SDS, O'Hanlon S, Cousens S, Abiose AO, Fischer PU, et al. Onchocerciasis: the pre-control association between prevalence of palpable nodules and skin microfilariae. PLoS Negl Trop Dis. 2013;7(4): e2168. doi: 10.1371/journal.pntd.0002168. pmid:23593528
[74]
Wilson MD, Cheke RA, Flasse SPJ, Grist S, Osei-Atweneboana MY, Tetteh-Kumah A, et al. Deforestation and the spatio-temporal distribution of savannah and forest members of the Simulium damnosum complex in southern Ghana and south-western Togo. Trans R Soc Trop Med Hyg. 2002;96(6): 632–639. pmid:12625139 doi: 10.1016/s0035-9203(02)90335-4
[75]
Osei-Atweneboana MY, Eng JK, Boakye DA, Gyapong JO, Prichard RK. Prevalence and intensity of Onchocerca volvulus infection and efficacy of ivermectin in endemic communities in Ghana: a two-phase epidemiological study. Lancet. 2007;369(9578): 2021–2029. pmid:17574093 doi: 10.1016/s0140-6736(07)60942-8
[76]
Lamberton PHL, Cheke RA, Walker M, Winskill P, Osei-Atweneboana MY, Tirados I, et al. Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the Simulium damnosum complex. Parasit Vectors. 2014;7: 511. doi: 10.1186/s13071-014-0511-9. pmid:25413569
[77]
Lamberton PHL, Cheke RA, Winskill P, Tirados I, Walker M, Osei-Atweneboana MY, et al. Onchocerciasis transmission in Ghana: persistence under different control strategies and the role of the simuliid vectors. PLoS Negl Trop Dis. 2015;9(4): e0003688. doi: 10.1371/journal.pntd.0003688. pmid:25897492
[78]
Rolland A, Balay G. L’onchocercose dans le foyer Bissa. Mimeographed document 111/ONCHO. Bobo-Dioulasso: Organisation de Coordination et de Coopération pour la Lutte contre les Grandes Endémies. 1969. [English translation published by the Onchocerciasis Control Programme, Ouagadougou, in 1976].
[79]
De Sole G, Giese J, Keita FM, Remme J. Detailed epidemiological mapping of three onchocerciasis foci in West Africa. Acta Trop. 1991;48(3): 203–213. pmid:1671622 doi: 10.1016/0001-706x(91)90048-o
[80]
Samba EM (1994) The Onchocerciasis Control Programme in West Africa: an example of effective public health management. Public Health in Action 1, Geneva: World Health Organization. 1994. []. Accessed 30 November 2015.
[81]
Renz A, Wenk P. Studies on the dynamics of transmission of onchocerciasis in a Sudan savanna area of North Cameroon. I. Prevailing Simulium vectors, their biting rates and age composition at different distances from their breeding sites. Ann Trop Med Parasitol. 1987;81(3): 215–228. pmid:3662664
[82]
Duke BOL, Moore PJ, Anderson J. Studies on factors influencing the transmission of onchocerciasis. VII. A comparison of the Onchocerca volvulus transmission potentials of Simulium damnosum populations in four Cameroon rain-forest villages and the pattern of onchocerciasis associated therewith. Ann Trop Med Parasitol. 1972;66(2): 219–234. pmid:5038247
[83]
Davies JB, Beech-Garwood PA, Thomson MC, McMahon JE. Onchocerciasis transmission levels and Simulium damnosum complex biting activity at riverside and rice field sites in Sierra Leone. Med Vet Entomol. 1988;2(4): 357–369. pmid:2980195 doi: 10.1111/j.1365-2915.1988.tb00209.x
[84]
Bockarie MJ, Davies JB, Thomson MC, Morgan HG. The transmission of onchocerciasis at a forest village in Sierra Leone. I. Simulium damnosum s.l. biting densities and infection with Onchocerca volvulus at five representative sites. Ann Trop Med Parasitol. 1990;84(6): 587–597. pmid:2076037
[85]
Garms R, Walsh JF, Davies JB. Studies on the reinvasion of the Onchocerciasis Control Programme in the Volta River Basin by Simulium damnosum s.l. with emphasis on the south-western areas. Tropenmed Parasitol. 1979;30(3): 345–362. pmid:575581
[86]
Dadzie KY, Remme J, Baker RH, Rolland A, Thylefors B. Ocular onchocerciasis and intensity of infection in the community. III. West African rainforest foci of the vector Simulium sanctipauli. Trop Med Parasitol. 1990;41(4): 376–382 pmid:1963702
[87]
Dadzie KY, Remme J, Rolland A, Thylefors B. Ocular onchocerciasis and intensity of infection in the community. II. West African rainforest foci of the vector Simulium yahense. Trop Med Parasitol. 1989;40(3): 348–354 pmid:2559472
[88]
Remme J, Dadzie KY, Rolland A, Thylefors, B. Ocular onchocerciasis and intensity of infection in the community. I. West African savanna. Trop Med Parasitol. 1989; 40(3): 340–347 pmid:2617045
[89]
Jacob BG, Novak RJ, Toe LD, Sanfo M, Griffith DA, Lakwo TL, et al. Validation of a remote sensing model to identify Simulium damnosum s.l. breeding sites in Sub-Saharan Africa. PLoS Negl Trop Dis. 2013;7(7): e2342. doi: 10.1371/journal.pntd.0002342. pmid:23936571
[90]
Ngoumou P, Walsh JF, Macé JM. A rapid mapping technique for the prevalence and distribution of onchocerciasis: a Cameroon case study. Ann Trop Med Parasitol. 1994;88(5): 463–474. pmid:7979636
[91]
Macé JM, Boussinesq M, Ngoumou P, Enyegue Oye J, Koéranga A, Godin C. Country-wide rapid epidemiological mapping of onchocerciasis (REMO) in Cameroon. Ann Trop Med Parasitol. 1997;91(4): 379–391. pmid:9290845
[92]
Cheke RA, Basá?ez MG, Perry M, White MT, Garms R, Obuobie E, et al. Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa. Philos Trans R Soc Lond B Biol Sci. 2015; 370(1665): 20130559. doi: 10.1098/rstb.2013.0559. pmid:25688018
[93]
Mendoza-Aldana J, Piechulek H, Maguire J. Forest onchocerciasis in Cameroon: its distribution and implications for selection of communities for control programmes. Ann Trop Med Parasitol. 1997;91(1): 79–86. pmid:9093432
[94]
Vivas-Martínez S, Basá?ez MG, Grillet ME, Weiss H, Botto C, García M, et al. Onchocerciasis in the Amazonian focus of southern Venezuela: altitude and blackfly species composition as predictors of endemicity to select communities for ivermectin control programmes. Trans R Soc Trop Med Hyg. 1998;92(6): 613–620. pmid:10326102 doi: 10.1016/s0035-9203(98)90784-2
[95]
Tada I, Aoki Y, Rimola CE, Ikeda T, Matsuo F, Ochoa JO, et al. Onchocerciasis in San Vicente Pacaya, Guatemala. Am J Trop Med Hyg. 1979;28(1): 67–71. pmid:434316
[96]
Carabin H, Escalona M, Marshall C, Vivas-Martínez S, Botto C, Joseph L, et al. Prediction of community prevalence of human onchocerciasis in the Amazonian focus: Bayesian approach. Bull World Health Organ. 2003;81(7): 482–490. pmid:12973640
[97]
Botto C, Villamizar NJ, Jocik Z, Grillet ME, Basá?ez MG. Landscape epidemiology of human onchocerciasis in southern Venezuela. In: Nriagu J, editor-in-chief. Encyclopaedia of Environmental Health. Oxford: Elsevier; 2011. pp: 366–379.
[98]
Garske T1, Ferguson NM, Ghani AC. Estimating air temperature and its influence on malaria transmission across Africa. PLoS One. 2013;8(2): e56487. doi: 10.1371/journal.pone.0056487. pmid:23437143
[99]
World Health Organization. World Health Organization Expert Committee on Onchocerciasis. Third Report. Technical Report Series No. 752. Geneva: WHO. 1987. [] and [], accessed 30 November 2015.
[100]
De Sole G, Baker R, Dadzie KY, Giese J, Guillet P, Keita FM, et al. Onchocerciasis distribution and severity in five West African countries. Bull World Health Organ. 1991; 69(6): 689–698. pmid:1786617
[101]
De Sole G, Accorsi S, Cresveaux H, Remme J, Walsh F, Hendrickx J. Distribution and severity of onchocerciasis in southern Benin, Ghana and Togo. Acta Trop. 1992;52(2–3): 87–97. pmid:1363185 doi: 10.1016/0001-706x(92)90024-r
[102]
Amazigo U, Noma M, Bump J, Benton B, Liese B, Yaméogo L, et al. Onchocerciasis (Chapter 15). In: Jamison DT, Feachem RG, Makgoba MW, Bos ER, Baingana FK, Hofman KJ, Rogo KO, editors. Disease and Mortality in Sub-Saharan Africa. 2nd edition. Washington DC: World Bank; 2006. pp: 215–222.
[103]
Basá?ez MG, McCarthy J, French MD, Yang GJ, Walker M, Gambhir M, et al. A research agenda for helminth diseases of humans: modelling for control and elimination. PLoS Negl Trop Dis. 2012;6(4): e1548. doi: 10.1371/journal.pntd.0001548. pmid:22545162
[104]
Turner HC, Walker M, Churcher TS, Basá?ez MG. Modelling the impact of ivermectin on River Blindness and its burden of morbidity and mortality in African savannah: EpiOncho projections. Parasit Vectors. 2014;7(1): 241. doi: 10.1186/1756-3305-7-241
[105]
Noma M, Nwoke BEB, Nutall I, Tambala PA, Enyong P, Namsenmo A, et al. Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis Control. Ann Trop Med Parasitol. 2002;96 (Suppl 1): S29–S39. pmid:12081248 doi: 10.1179/000349802125000637
[106]
Thomson MC, Obsomer V, Dunne M, Connor SJ, Molyneux DH. Satellite mapping of Loa loa prevalence in relation to ivermectin use in west and central Africa. Lancet. 2000; 356(9235): 1077–1078. Erratum in Lancet. 2000; 356(9236): 1198. pmid:11009145 doi: 10.1016/s0140-6736(00)02733-1
[107]
Zouré HGM, Wanji S, Noma M, Amazigo UV, Diggle PJ, Tekle AH, et al. The geographic distribution of Loa loa in Africa: results of large-scale implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA). PLoS Negl Trop Dis. 2011;5(6): e1210. doi: 10.1371/journal.pntd.0001210. pmid:21738809
[108]
Tekle AH, Zouré H, Wanji S, Leak S, Noma M, Remme JH, et al. Integrated rapid mapping of onchocerciasis and loiasis in the Democratic Republic of Congo: impact on control strategies. Acta Trop. 2011;120 (Suppl 1): S81–S90. doi: 10.1016/j.actatropica.2010.05.008. pmid:20525531
[109]
Chippaux JP, Boussinesq M, Gardon J, Gardon-Wendel N, Ernould JC Severe adverse reaction risks during mass treatment with ivermectin in loiasis endemic areas. Parasitol Today. 1996;12(11): 448–450. pmid:15275280 doi: 10.1016/0169-4758(96)40006-0
[110]
Gardon J, Gardon-Wendel N, Demanga-Ngangue, Kamgno J, Chippaux JP, Boussinesq M. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet. 1997;350(9070): 18–22. pmid:9217715 doi: 10.1016/s0140-6736(96)11094-1