全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ecological Drivers of Mansonella perstans Infection in Uganda and Patterns of Co-endemicity with Lymphatic Filariasis and Malaria

DOI: 10.1371/journal.pntd.0004319

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Mansonella perstans is a widespread, but relatively unknown human filarial parasite transmitted by Culicoides biting midges. Although it is found in many parts of sub-Saharan Africa, only few studies have been carried out to deepen the understanding of its ecology, epidemiology, and health consequences. Hence, knowledge about ecological drivers of the vector and parasite distribution, integral to develop spatially explicit models for disease prevention, control, and elimination strategies, is limited. Methodology We analyzed data from a comprehensive nationwide survey of M. perstans infection conducted in 76 schools across Uganda in 2000–2003, to identify environmental drivers. A suite of Bayesian geostatistical regression models was fitted, and the best fitting model based on the deviance information criterion was utilized to predict M. perstans infection risk for all of Uganda. Additionally, we investigated co-infection rates and co-distribution with Wuchereria bancrofti and Plasmodium spp. infections observed at the same survey by mapping geographically overlapping areas. Principal Findings Several bioclimatic factors were significantly associated with M. perstans infection levels. A spatial Bayesian regression model showed the best fit, with diurnal temperature range, normalized difference vegetation index, and cattle densities identified as significant covariates. This model was employed to predict M. perstans infection risk at non-sampled locations. The level of co-infection with W. bancrofti was low (0.3%), due to limited geographic overlap. However, where the two infections did overlap geographically, a positive association was found. Conclusions/Significance This study presents the first geostatistical risk map for M. perstans in Uganda. We confirmed a widespread distribution of M. perstans, and identified important potential drivers of risk. The results provide new insight about the ecologic preferences of this otherwise poorly known filarial parasite and its Culicoides vector species in Uganda, which might be relevant for other settings in sub-Saharan Africa.

References

[1]  Nelson GS (1965) Filarial infections as zoonoses. J Helminthol 39: 229–250. pmid:5328829 doi: 10.1017/s0022149x00020630
[2]  Simonsen PE, Onapa AW, Asio SM (2011) Mansonella perstans filariasis in Africa. Acta Trop 120 Suppl 1: S109–120. doi: 10.1016/j.actatropica.2010.01.014. pmid:20152790
[3]  Kelly-Hope LA, Cano J, Stanton MC, Bockarie MJ, Molyneux DH (2014) Innovative tools for assessing risks for severe adverse events in areas of overlapping Loa loa and other filarial distributions: the application of micro-stratification mapping. Parasit Vectors 4: 178. doi: 10.1186/1756-3305-7-307
[4]  Linley JR, Hoch AL, Pinheiro FP (1983) Biting midges (Diptera: Ceratopogonidae) and human health. J Med Entomol 20: 347–364. pmid:6312046 doi: 10.1093/jmedent/20.4.347
[5]  Linley JR (1985) Biting midges (Diptera: Ceratopogonidae) as vectors of nonviral animal pathogens. J Med Entomol 22: 589–599. pmid:3908679 doi: 10.1093/jmedent/22.6.589
[6]  Mellor PS, Leake CJ (2000) Climatic and geographic influences on arboviral infections and vectors. Revue Scientifique et Technique de l’Office International des Epizooties 19: 41–54.
[7]  Carpenter S, Groschup MH, Garros C, Felippe-Bauer ML, Purse BV (2013) Culicoides biting midges, arboviruses and public health in Europe. Antivir Res 100: 102–113. doi: 10.1016/j.antiviral.2013.07.020. pmid:23933421
[8]  Onapa AW, Simonsen PE, Baehr I, Pedersen EM (2005) Rapid assessment of the geographical distribution of lymphatic filariasis in Uganda, by screening of schoolchildren for circulating filarial antigens. Ann Trop Med Parasitol 99: 141–153. pmid:15814033 doi: 10.1179/136485905x19829
[9]  Stensgaard AS, Vounatsou P, Onapa AW, Simonsen PE, Pedersen EM, et al. (2011) Bayesian geostatistical modelling of malaria and lymphatic filariasis infections in Uganda: predictors of risk and geographical patterns of co-endemicity. Malar J 10: 298. doi: 10.1186/1475-2875-10-298. pmid:21989409
[10]  Onapa AW, Simonsen PE, Baehr I, Pedersen EM (2005) Rapid assessment of the geographical distribution of Mansonella perstans infections in Uganda, by screening schoolchildren for microfilariae. Ann Trop Med Parasitol 99: 383–393. pmid:15949186 doi: 10.1179/136485905x361990
[11]  Molyneux DH, Mitre E, Bockarie MJ, Kelly-Hope LA (2014) Filaria zoogeography in Africa: ecology, competitive exclusion, and public health relevance. Trends Parasitol 30: 163–169. doi: 10.1016/j.pt.2014.02.002. pmid:24636357
[12]  WHO (1987). Control of lymphatic filariasis. A manual for health personnel. Geneva: World Health Organization.
[13]  Calvete C, Estrada R, Miranda MA, Borras D, Calvo JH, et al. (2009) Ecological correlates of bluetongue virus in Spain: predicted spatial occurrence and its relationship with the observed abundance of the potential Culicoides spp. vector. Vet J 182: 235–243. doi: 10.1016/j.tvjl.2008.06.010. pmid:18667341
[14]  Beyer HL (2012) Geospatial modelling environment (version 0.7.2.1). Spatial Ecology, LLC.
[15]  Stensgaard A, Jorgensen A, Kabatereine NB, Malone JB, Kristensen TK (2005) Modeling the distribution of Schistosoma mansoni and host snails in Uganda using satellite sensor data and geographical information systems. Parassitologia 47: 115–125. pmid:16044680
[16]  Stensgaard AS, Jorgensen A, Kabatereine NB, Rahbek C, Kristensen TK (2006) Modeling freshwater snail habitat suitability and areas of potential snail-borne disease transmission in Uganda. Geospat Health 1: 93–104. pmid:18686235 doi: 10.4081/gh.2006.284
[17]  Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov B, Csaki F, editors. Second international symposium on information theory. Budapest: Akademiai Kiado. pp. 267–281.
[18]  Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J R Stat Soc Ser C Appl Stat 47: 299–326. doi: 10.1111/1467-9876.00113
[19]  Best N, Richardson S, Thomson A (2005) A comparison of Bayesian spatial models for disease mapping. StatMethods Med Res 14: 35–59. doi: 10.1191/0962280205sm388oa
[20]  Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64: 583–616. doi: 10.1111/1467-9868.00353
[21]  Simoonga C, Utzinger J, Brooker S, Vounatsou P, Appleton CC, et al. (2009) Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa. Parasitology 136: 1683–1693. doi: 10.1017/S0031182009006222. pmid:19627627
[22]  Hürlimann E, Schur N, Boutsika K, Stensgaard AS, de Himpsl ML, et al. (2011) Toward an open-access global database for mapping, control, and surveillance of neglected tropical diseases. PLoS Negl Trop Dis 5: e1404. doi: 10.1371/journal.pntd.0001404. pmid:22180793
[23]  Gemperli A, Vounatsou P, Sogoba N, Smith T (2006) Malaria mapping using transmission models: application to survey data from Mali. Am J Epidemiol 163: 289–297. pmid:16357113 doi: 10.1093/aje/kwj026
[24]  Gosoniu L, Vounatsou P, Sogoba N, Maire N, Smith T (2009) Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model. Comput Stat Data Anal 53: 3358–3371. doi: 10.1016/j.csda.2009.02.022.
[25]  Gosoniu L, Veta AM, Vounatsou P (2010) Bayesian geostatistical modeling of Malaria Indicator Survey data in Angola. PLoS One, 5: e9322. doi: 10.1371/journal.pone.0009322. pmid:20351775
[26]  Raso G, Schur N, Utzinger J, Koudou BG, Tchicaya ES, et al. (2012) Mapping malaria risk among children in C?te d'Ivoire using Bayesian geo-statistical models. Malar J, 11: 160. doi: 10.1186/1475-2875-11-160. pmid:22571469
[27]  Beck-W?rner C, Raso G, Vounatsou P, N'Goran EK, Rigo G, et al. (2007) Bayesian spatial risk prediction of Schistosoma mansoni infection in western C?te d'Ivoire using a remotely-sensed digital elevation model. Am J Trop Med and Hyg 76: 956–963.
[28]  Raso G, Matthys B, N'Goran EK, Tanner M, Vounatsou P, et al. (2005) Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western C?te d'Ivoire. Parasitology 131: 97–108. pmid:16038401 doi: 10.1017/s0031182005007432
[29]  Schur N, Hürlimann E, Garba A, Traore MS, Ndir O, et al. (2011) Geostatistical model-based estimates of schistosomiasis prevalence among individuals aged ≤20 years in West Africa. PLoS Negl Trop Dis 5: e1194. doi: 10.1371/journal.pntd.0001194. pmid:21695107
[30]  Vounatsou P, Raso G, Tanner M, N'Goran EK, Utzinger J (2009) Bayesian geostatistical modelling for mapping schistosomiasis transmission. Parasitology 136: 1695–1705. doi: 10.1017/S003118200900599X. pmid:19490724
[31]  Zoure HG, Wanji S, Noma M, Amazigo UV, Diggle PJ, et al. (2011) The geographic distribution of Loa loa in Africa: results of large-scale implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA). PLoS Negl Trop Dis 5: e1210. doi: 10.1371/journal.pntd.0001210. pmid:21738809
[32]  Diggle PJ, Thomson MC, Christensen OF, Rowlingson B, Obsomer V, et al. (2007) Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty. Ann Trop Med Parasitol 101: 499–509. pmid:17716433 doi: 10.1179/136485907x229121
[33]  Karagiannis-Voules DA, Biedermann P, Ekpo UF, Garba A, Langer E, et al.(2015) Spatial and temporal distribution of soil-transmitted helminth infection in sub-Saharan Africa: a systematic review and geostatistical meta-analysis. Lancet Infect Dis 15: 74–84 doi: 10.1016/S1473-3099(14)71004-7 pmid:25486852.
[34]  Karagiannis-Voules DA, Odermatt P, Biedermann P, Khieu V, Sch?r F, et al. (2015) Geostatistical modelling of soil-transmitted helminth infection in Cambodia: do socioeconomic factors improve predictions? Acta Trop 141: 204–212. doi: 10.1016/j.actatropica.2014.09.001 pmid:25205492.
[35]  Akue JP, Nkoghe D, Padilla C, Moussavou G, Moukana H, et al. (2011) Epidemiology of concomitant infection due to Loa loa and Mansonella perstans in Gabon. Plos Negl Trop Dis 5: e1329. doi: 10.1371/journal.pntd.0001329. pmid:22022623
[36]  Van Hoegaerden M, Chabaud B, Akue JP, Ivanoff B (1987) Filariasis due to Loa loa and Mansonella perstans: distribution in the region of Okondja, Haut-Ogooue Province, Gabon, with parasitological and serological follow-up over one year. Trans R Soc Trop Med Hyg 81: 441–446. pmid:3479854 doi: 10.1016/0035-9203(87)90163-5
[37]  Mommers EC, Dekker HS, Richard P, Carcia A, Chippaux JP (1995) Prevalence of L. loa and M. perstans filariasis in Southern Cameroon. Trop Geogr Med 47: 2–5. pmid:7747326
[38]  Low G. C. (1903). Filaria perstans. British Medical Journal, i, 722–724. doi: 10.1136/bmj.1.2204.722
[39]  Kershaw WE, Keay RWJ, Nicholas WL, Zahra A (1953) Studies on the epidemiology of filariasis in West Africa, with special reference to the British Cameroons and the Niger Delta. IV The incidence of Loa-loa and Acanthocheilonema perstans in the rain-forest, the forest fringe and the mountain grasslands of the british Cameroons, with observations on the species of Chrysops and Culicoides found. Ann Trop MedParasit 47: 406–425.
[40]  Nicholas WL, Kershaw WE, Keay RWJ, Zahra A (1953) Studies on the epidemiology of filariasis in West Africa, with special reference to the british Cameroons and the Niger Delta. III The distribution of Culicoides spp biting man in the rain-forest, the forest fringe and the mountain grasslands of the british Cameroons. Ann Trop MedParasit 47: 95–111.
[41]  Clarke Vde V, Harwin RM, MacDonald DF, Green CA, Rittey DA (1971) Filariasis: Dipetalonema perstans infections in Rhodesia. Cent Afr J Med 17: 1–11. pmid:5103154
[42]  Udonsi JK (1986) The status of human filariasis in relation to clinical signs in endemic areas of the Niger Delta. Ann Trop Med Parasitol 80: 425–432. pmid:3539045
[43]  Vanhoegaerden M, Chabaud B, Akue JP, Ivanoff B (1987) Filariasis due to Loa loa and Mansonella perstans: distribution in the region of Okondja, Haut-Ogooue Province, Gabon, with parasitological and serological follow-up over one year. Trans R Soc Trop Med Hyg 81: 441–446. pmid:3479854 doi: 10.1016/0035-9203(87)90163-5
[44]  Noireau F, Carme B, Apembet JD, Gouteux JP (1989) Loa loa and Mansonella perstans filariasis in the Chaillu mountains, Congo: parasitological prevalence. Trans R Soc Trop Med Hyg 83: 529–534. pmid:2617607 doi: 10.1016/0035-9203(89)90280-0
[45]  Hopkins CA (1952) Notes on the biology of certain Culicoides studied in the British Cameroons, West Africa, together with observations on their possible role as vectors of Acanthocheilonema perstans. AnnTrop MedParasit 46: 165–&.
[46]  Nicholas WL (1953) The Dispersal of Culicoides grahamii and C. austeni from their breeding sites prior to their taking a blood-meal. Ann Trop Med Parasit 47: 309–323. pmid:13105263
[47]  Khamala CPM (1971) Ecological distribution of East African Culicoides latreille (Dipt, Ceratopogonidae) as shown by light-traps. Bull Ent Res 60: 549–557. doi: 10.1017/s0007485300042310
[48]  Noireau F, Itoua A, Carme B (1990) Epidemiology of Mansonella perstans filariasis in the forest region of South Congo. Ann Trop Med Parasit 84: 251–254. pmid:2222027
[49]  Anosike JC, Dozie INS, Onwuliri COE, Nwoke BEB, Onwuliri VA (2005) Prevalence of Mansonella perstans infections among the nomadic Fulanis of northern Nigeria. Ann Agric Environ Med 12: 35–38. pmid:16028864
[50]  Walker AR (1977) Seasonal fluctuations of Culicoides species (Diptera Ceratopogonidae) in Kenya. Bull Entomol Res 67: 217–233. doi: 10.1017/s0007485300011032
[51]  Thompson GM, Jess S, Murchie AK (2013) Differential emergence of Culicoides (Diptera: Ceratopogonidae) from on-farm breeding substrates in Northern Ireland. Parasitology 140: 699–708. doi: 10.1017/S0031182012002016. pmid:23363545
[52]  Walker AR (1977) Culicoides as potential vectors of viruses to livestock in Kenya. Mosquito News 37: 285–286.
[53]  Mwangi TW, Bethony JM, Brooker S (2006) Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol 100: 551–570. pmid:16989681 doi: 10.1179/136485906x118468
[54]  Graham AL (2008) Ecological rules governing helminth-microparasite coinfection. Proc Natl Acad Sci USA 105: 566–570. doi: 10.1073/pnas.0707221105. pmid:18182496
[55]  Brooker S, Akhwale W, Pullan R, Estambale B, Clarke SE, et al. (2007) Epidemiology of Plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg 77: 88–98. pmid:18165479
[56]  Eziefula AC, Brown M (2008) Intestinal nematodes: disease burden, deworming and the potential importance of co-infection. Curr Opin Infect Dis 21: 516–522. doi: 10.1097/QCO.0b013e32830f97fd. pmid:18725802
[57]  Hillier SD, Booth M, Muhangi L, Khihembo M, Mohammed K, et al. (2006) Malaria and helminth co-infection in a semi-urban population of pregnant women in Uganda. Am J Trop Med Hyg 75: 161–161.
[58]  Booth M (2006) The role of residential location in apparent helminth and malaria associations. Trends Parasitol 22: 359–362. pmid:16797235 doi: 10.1016/j.pt.2006.06.007
[59]  Kolaczinski JH, Kabatereine NB, Onapa AW, Ndyomugyenyi R, Kakembo ASL, et al. (2007) Neglected tropical diseases in Uganda: the prospect and challenge of integrated control. Trends Parasitol 23: 485–493. pmid:17826335 doi: 10.1016/j.pt.2007.08.007
[60]  Nielsen NO, Simonsen PE, Magnussen P, Magesa S, Friis H (2006) Cross-sectional relationship between HIV, lymphatic filariasis and other parasitic infections in adults in coastal northeastern Tanzania. Trans R Soc Trop Med Hyg 100: 543–550. pmid:16324731 doi: 10.1016/j.trstmh.2005.08.016
[61]  Kelly-Hope LA, Diggle PJ, Rowlingson BS, Gyapong JO, Kyelem D, et al. (2006) Negative spatial association between lymphatic filariasis and malaria in West Africa. Trop Med Int Health 11: 129–135. pmid:16451336 doi: 10.1111/j.1365-3156.2005.01558.x
[62]  Tekle AH, Zoure H, Wanji S, Leak S, Noma M, et al. (2011) Integrated rapid mapping of onchocerciasis and loiasis in the Democratic Republic of Congo: impact on control strategies. Acta Trop 120 Suppl 1: S81–90. doi: 10.1016/j.actatropica.2010.05.008. pmid:20525531

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133