Ascaris spp. infection affects 800 million people worldwide, and half of the world population is currently at risk of infection. Recurrent reinfection in humans is mostly due to the simplicity of the parasite life cycle, but the impact of multiple exposures to the biology of the infection and the consequences to the host’s homeostasis are poorly understood. In this context, single and multiple exposures in mice were performed in order to characterize the parasitological, histopathological, tissue functional and immunological aspects of experimental larval ascariasis. The most important findings revealed that reinfected mice presented a significant reduction of parasite burden in the lung and an increase in the cellularity in the bronchoalveolar lavage (BAL) associated with a robust granulocytic pulmonary inflammation, leading to a severe impairment of respiratory function. Moreover, the multiple exposures to Ascaris elicited an increased number of circulating inflammatory cells as well as production of higher levels of systemic cytokines, mainly IL-4, IL-5, IL-6, IL-10, IL-17A and TNF-α when compared to single-infected animals. Taken together, our results suggest the intense pulmonary inflammation associated with a polarized systemic Th2/Th17 immune response are crucial to control larval migration after multiple exposures to Ascaris.
References
[1]
Hotez PJ, Alvarado M, Basá?ez M- G, Bolliger I, Bourne R, Boussinesq M, et al. The Global Burden of Disease Study 2010: Interpretation and Implications for the Neglected Tropical Diseases. PLoS Negl Trop Dis. 2014; 8(7): e2865. doi: 10.1371/journal.pntd.0002865. pmid:25058013
[2]
Nejsum P, Frydenberg J, Roepstorff A, Parker ED. Population structure in Ascaris suum (Nematoda) among domestic swine in Denmark as measured by whole genome DNA fingerprinting. Hereditas. 2005; 142: 7/14. pmid:16970605 doi: 10.1111/j.1601-5223.2005.01864.x
[3]
Anderson TJ. Ascaris infections in humans from North America: molecular evidence for cross-infection. Parasitology. 1995; 110(2): 215–9. doi: 10.1017/s0031182000063988
[4]
Arizono N, Yoshimura Y, Tohzaka N, Yamada M, Tegoshi T, Onishi K, et al. Ascariasis in Japan: is pig-derived Ascaris infecting humans? Jpn J Infect Dis. 2010; 63(6): 447–8. pmid:21099099
[5]
Takata I. Experimental infection of man with Ascaris of man and the pig. Kitasato Arch Exp Med. 1951; 23(4): 151–9; English transl, 49–59. pmid:14874382
[6]
Seo BS, Chai JY. Effect of two-month interval mass chemotherapy on the reinfection of Ascaris lumbricoides in Korea. Korean J Parasitol. 1980; 18: 153–163. doi: 10.3347/kjp.1980.18.2.153
[7]
Jia T, Melville S, Utzinger J, King CH, Zhou X. Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis. PloS Negl Trop Dis. 2012; 6: e1621. doi: 10.1371/journal.pntd.0001621. pmid:22590656
[8]
Cooper PJ, Chico ME, Sandoval C, Espinel I, Guevara A, Kennedy MW, et al. Human infection with Ascaris lumbricoides is associated with a polarized cytokine response. J Infect Dis. 2000; 182: 1207–1213. pmid:10979919 doi: 10.1086/315830
[9]
Cooper PJ, Chico ME, Sandoval C, Nutman TB. Atopic phenotype is an important determinant of immunoglobulin E-mediated inflammation and expression of T helper cell type 2 cytokines to Ascaris antigens in children exposed to ascariasis. J Infect Dis. 2004; 190: 1338–1346. pmid:15346347 doi: 10.1086/423944
[10]
Gazzinelli-Guimar?es PH, Gazzinelli-Guimar?es AC, Silva FN, Mati VLT, Dhom-Lemos LC, Barbosa FS, et al. Parasitological and immunological aspects of early Ascaris spp. infection in mice. Int J Parasitol. 2013; 43: 697–706. doi: 10.1016/j.ijpara.2013.02.009. pmid:23665127
[11]
Smith KA, Maizels RM. IL-6 controls susceptibility to helminth infection by impeding Th2 responsiveness and altering the Treg phenotype in vivo. Eur J Immunol. 2014; 44: 150–161. doi: 10.1002/eji.201343746. pmid:24185641
[12]
Roesner LM, Heratizadeh A, Begemann G, Kienlin P, Hradetzky S, Niebuhr M,et al. Der p1 and Der p2-Specific T Cells Display a Th2, Th17, and Th2/Th17 Phenotype in Atopic Dermatitis. J Invest Dermatol. 2015; 28. doi: 10.1038/jid.2015.162
[13]
Bouchery T, Kyle R, Ronchese F, Le Gros G. The differentiation of CD4+ T helper cell subsets in the context of helminth parasite infection. Frontiers in Immunology. 2014; 5:00487. doi: 10.3389/fimmu.2014.00487
[14]
Holland CV. Predisposition to ascariasis: patterns, mechanisms and implications. Parasitology. 2009; 136: 1537–1547. doi: 10.1017/S0031182009005952. pmid:19450374
[15]
Lewis R, Behnke JM, Stafford P, Holland CV. The development of a mouse model to explore resistance and susceptibility to early Ascaris suum infection. Parasitology. 2006; 132: 289–300. pmid:16209722 doi: 10.1017/s0031182005008978
[16]
Tsuji N, Suzuki K, Kasuga-Aoki H, Isobe T, Arakawa T, Matsumoto Y. Mice intranasally immunized with a recombinant 16-kilodalton antigen from roundworm Ascaris parasites are protected against larval migration of Ascaris suum. Infect Immun. 2003; 71(9): 5314–23. pmid:12933879 doi: 10.1128/iai.71.9.5314-5323.2003
[17]
Islam MK, Miyoshi T, Tsuji N. Vaccination with recombinant Ascaris suum 24-kilodalton antigen induces a Th1/Th2-mixed type immune response and confers high levels of protection against challenged Ascaris suum lung-stage infection in BALB/c mice. Int J Parasitol. 2005; 35(9): 1023–30. pmid:15998515 doi: 10.1016/j.ijpara.2005.03.019
[18]
Boes J, Eriksen L, Nansen P. Embryonation and infectivity of Ascaris suum eggs isolated from worms expelled by pigs treated with albendazole, pyrantelpamoate, ivermectin or piperazinedihydrochloride. Vet Parasitol. 1998; 75: 181–190. pmid:9637219 doi: 10.1016/s0304-4017(97)00197-0
[19]
Strath M, Warren DJ, Sanderson CJ. Detection of eosinophils using an eosinophil peroxidase assay. Its use as an assay for eosinophil differentiation factors. J Immunol Methods.1985; 83: 209–215. pmid:3840509 doi: 10.1016/0022-1759(85)90242-x
[20]
Silveira MR, Nunes KP, Cara DC, Souza DG, Correa AJr, Teixeira MM, et al. Infection with Strongyloides venezuelensis induces transient airway eosinophilic inflammation, an increase in immunoglobulin E, and hyper responsiveness in rats. Infect Immun. 2002; 70: 6263–6272. pmid:12379705 doi: 10.1128/iai.70.11.6263-6272.2002
[21]
Russo RC, Garcia CC, Barcelos LS, Rachid MA, Guabiraba R, Roffê E, et al. Phosphoinositide 3-kinase γ plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice. J Leukoc Biol. 2011; 89(2): 269–82. doi: 10.1189/jlb.0610346. pmid:21048214
[22]
Guabiraba R, Russo RC, Coelho AM, Ferreira MA, Lopes GA, Gomes AK, et al.Blockade of cannabinoid receptors reduces inflammation, leukocyte accumulation and neovascularization in a model of sponge-induced inflammatory angiogenesis. Inflamm Res. 2013; 62(8): 811–21. doi: 10.1007/s00011-013-0638-8. pmid:23722450
[23]
Costa CA, Brito KN, Gomes MA, Caliari MV. Parasite. 2007 Dec; 14(4): 329–34. Morphometric study of the hepatic lesions experimentally induced in hamsters by Entamoeba dispar and E. histolytica.
[24]
Rodrigues-Machado MG, Silva GC, Pinheiro MB, Caliari MV, Borges EL. Effects of sepsis-induced acute lung injury on glycogen content in different tissues. Experimental Lung Research. 2010; 36: 302–306. doi: 10.3109/01902141003609983. pmid:20497025
[25]
McCraw BM. The Development of Ascaris suum in Calves. Can J Comp Med. 1975; 39: 354–357. pmid:1139416
[26]
Dawkins HJ, Grove DI. Immunisation of mice against Strongyloides ratti. Z Parasitenkd. 1982; 66: 327–333. pmid:7080613 doi: 10.1007/bf00925349
[27]
Yu JR, Hong ST, Chai JY, Lee SH. The effect of reinfection with Neodiplostomum seoulensis on the histopathology and activities of brush border membrane bound enzymes in the rat small intestine. Korean J Parasitol.1995; 33: 37–43. pmid:7735784 doi: 10.3347/kjp.1995.33.1.37
[28]
Finkelman FD, Urban JF Jr. The other side of the coin: the protective role of the TH 2 cytokines. J Allergy Clin Immunol. 2001; 107: 772–780. pmid:11344341 doi: 10.1067/mai.2001.114989
[29]
Sohn WM, Zhang H, Choi MH, Hong ST. Susceptibility of experimental animals to reinfection with Clonorchis sinensis. Korean J Parasitol. 2006; 44: 163–166. pmid:16809966 doi: 10.3347/kjp.2006.44.2.163
[30]
Schilter HC, Pereira ATM, Eschenazi PD, Fernandes A, Shim D, Sousa ALS, et al.Regulation of immune responses to Strongyloides venezuelensis challenge after primary infection with different larvae doses. Parasite Immunol.2010; 32: 184–192. doi: 10.1111/j.1365-3024.2009.01176.x. pmid:20398181
[31]
Masure D, Wang T, Vlaminck J, Claerhoudt S, Chiers K, Broecket WV, et al. The intestinal expulsion of the roundworm Ascaris suum is associated with eosinophils, intra-epithelial t cells and decreased intestinal transit time. PLoS Negl Trop Dis. 2013; 7(12): e2588. doi: 10.1371/journal.pntd.0002588. pmid:24340121
[32]
Masure D, Vlaminck J, Wang T, Chiers K, Van den Broeck W, et al. A Role for Eosinophils in the Intestinal Immunity against Infective Ascaris suum Larvae. PLoS Negl Trop Dis. 2013; 7(3): e2138. doi: 10.1371/journal.pntd.0002138. pmid:23556022
[33]
Lewis R, Behnke JM, Cassidy JP, Stafford P, Murray N, Holland CV. The migration of Ascaris suum larvae, and the associated pulmonary inflammatory response in susceptible C57BL/6j and resistant CBA/Ca mice. Parasitology. 2007; 134: 1301–1314. pmid:17381887 doi: 10.1017/s0031182007002582
[34]
Dold C, Cassidy JP, Stafford P, Behnke JM, Holland CV. Genetic influence on the kinetics and associated pathology of the early stage (intestinal-hepatic) migration of Ascaris suum in mice. Parasitology. 2010; 137: 173–185. doi: 10.1017/S0031182009990850. pmid:19765333
[35]
Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-α on bone homeostasis. Front Immunol. 2014; 5: 48. doi: 10.3389/fimmu.2014.00048. pmid:24592264
[36]
Artis D, Humphreys NE, Bancroft AJ, Rothwell NJ, Potten CS, Grencis R. Tumor necrosis factor-α is a critical component of interleukin 13-mediated protective T helper cell type 2 responses during helminth infection. J Exp Med. 1999; 190: 953–962. pmid:10510085 doi: 10.1084/jem.190.7.953
[37]
Hayes KS, Bancroft AJ, Grencis RK. The role of TNF-alpha in Trichuris muris infection I: influence of TNF-alpha receptor usage, gender and IL-13. Parasite Immunol. 2007; 29: 575–582. pmid:17944747 doi: 10.1111/j.1365-3024.2007.00979.x
[38]
Gause WC, Urban JF Jr, Stadecker MJ. The immune response to parasitic helminths: insights from murine models. Trends Immunol. 2003; 24: 269–277. pmid:12738422 doi: 10.1016/s1471-4906(03)00101-7
[39]
Geiger SM, Caldas IR, Mc Glone BE, Campi-Azevedo AC, De Oliveira LM, Brooker S, et al. Stage-specific immune responses in human Necator americanus infection. Parasite Immunol. 2007; 29: 347–358. pmid:17576364 doi: 10.1111/j.1365-3024.2007.00950.x
[40]
Geiger SM, Alexander NDE, Fujiwara RT, Brooker S, Cundill B, Diemert DJ, et al. Necator americanus and helminth co-infections: further down-modulation of hookworm-specific type 1 immune responses. PLoS Negl Trop Dis. 2011; 5: e1280. doi: 10.1371/journal.pntd.0001280. pmid:21909439
[41]
Cosmi L, Maggi L, Santarlasci V, Capone M, Cardilicchia E, Frosali F, et al.Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol. 2010; 125: 222–30. doi: 10.1016/j.jaci.2009.10.012. pmid:20109749
[42]
Schopf LR, Hoffmann KF, Cheever AW, Urban JF Jr, Wynn TA. IL-10 is critical for host resistance and survival during gastrointestinal helminth infection. J Immunol. 2002; 168: 2383–2392. pmid:11859129 doi: 10.4049/jimmunol.168.5.2383
[43]
Bradley JE, Jackson JA. Immunity, immunoregulation and the ecology of trichuriasis and ascariasis. Parasite Immunol. 2005; 26: 429–441. doi: 10.1111/j.0141-9838.2004.00730.x
[44]
Wilson MS, Cheever AW, White SD, Thompson RW, Wynn TA. IL-10 blocks the development of resistance to re-infection with Schistosoma mansoni. PLoS Pathog. 2011; 7: e1002171. doi: 10.1371/journal.ppat.1002171. pmid:21829367
[45]
Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas IO, Cheever AW, et al. Bleomycin and IL-1beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010; 207(3): 535–52. doi: 10.1084/jem.20092121. pmid:20176803
[46]
Chen F, Liu Z, Wu W, Rozo C, Bowdridge S, Millman A. An essential role for Th2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 2012; 18: 260–266. doi: 10.1038/nm.2628. pmid:22245779
[47]
Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology. 2013; 139(4): 523–32. doi: 10.1111/imm.12105. pmid:23551262
[48]
Murdock BJ, Shreiner AB, McDonald RA, Osterholzer JJ, White ES, Toews GB, et al. Coevolution of Th1, TH2, and Th17 responses during repeated pulmonary exposure to Aspergillus fumigatus conidia. Infect Immun. 2011; 79(1): 125–35. doi: 10.1128/IAI.00508-10. pmid:21041495
[49]
Wilson MS, Wynn TA. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2009; 2(2): 103–121. doi: 10.1038/mi.2008.85. pmid:19129758
[50]
Newcomb DC, Boswell MG, Huckabee MM, Goleniewska K, Dulek DE, Reiss S, et al. IL-13 regulates Th17 secretion of IL-17A in an IL-10-dependent manner. J Immunol. 2012; 188: 1027–1035. doi: 10.4049/jimmunol.1102216. pmid:22210911
[51]
Nutman TB. Evaluation and differential diagnosis of marked, persistent eosinophilia. Immunol Allergy Clin North Am. 2007; 27(3): 529–549. pmid:17868863 doi: 10.1016/j.iac.2007.07.008
[52]
Kunst H, Mack D, Kon OM, Banerjee AK, Chiodini P, Grant A. Parasitic infections of the lung: a guide for the respiratory physician. Thorax. 2010. doi: 10.1136/thx.2009.132217
[53]
Gelpi AP, Mustafa A. Seasonal pneumonitis with eosinophilia: a study of larval ascariasis in Saudi Arabs.Am J Trop Med Hyg. 1967; 16: 646–657. pmid:4861323
[54]
McSharry C, Xia Y, Holland CV, Kennedy MW. Natural Immunity to Ascaris lumbricoides Associated with Immunoglobulin E Antibody to ABA-1 Allergen and Inflammation Indicators in Children. Infect Immun. 1999; 67:484–489. pmid:9916049