全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of In Vitro Cultivation on the Transcriptome of Adult Brugia malayi

DOI: 10.1371/journal.pntd.0004311

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Filarial nematodes cause serious and debilitating infections in human populations of tropical countries, contributing to an entrenched cycle of poverty. Only one human filarial parasite, Brugia malayi, can be maintained in rodents in the laboratory setting. It has been a widely used model organism in experiments that employ culture systems, the impact of which on the worms is unknown. Methodology/Principal Findings Using Illumina RNA sequencing, we characterized changes in gene expression upon in vitro maintenance of adult B. malayi female worms at four time points: immediately upon removal from the host, immediately after receipt following shipment, and after 48 h and 5 days in liquid culture media. The dramatic environmental change and the 24 h time lapse between removal from the host and establishment in culture caused a globally dysregulated gene expression profile. We found a maximum of 562 differentially expressed genes based on pairwise comparison between time points. After an initial shock upon removal from the host and shipping, a few stress fingerprints remained after 48 h in culture and until the experiment was stopped. This was best illustrated by a strong and persistent up-regulation of several genes encoding cuticle collagens, as well as serpins. Conclusions/Significance These findings suggest that B. malayi can be maintained in culture as a valid system for pharmacological and biological studies, at least for several days after removal from the host and adaptation to the new environment. However, genes encoding several stress indicators remained dysregulated until the experiment was stopped.

References

[1]  Taylor MJ, Hoerauf A, Bockarie M (2010) Lymphatic filariasis and onchocerciasis. Lancet 376: 1175–1185. doi: 10.1016/S0140-6736(10)60586-7. pmid:20739055
[2]  Hooper PJ, Chu BK, Mikhailov A, Ottesen EA, Bradley M (2014) Assessing progress in reducing the at-risk population after 13 years of the global programme to eliminate lymphatic filariasis. PLoS-Negl Trop Dis 8: e3333. doi: 10.1371/journal.pntd.0003333. pmid:25411843
[3]  Krishna Kumari A, Harichandrakumar KT, Das LK, Krishnamoorthy K (2005) Physical and psychosocial burden due to lymphatic filariasis as perceived by patients and medical experts. Trop Med Int Health 10: 567–573. pmid:15941420 doi: 10.1111/j.1365-3156.2005.01426.x
[4]  Williams SA, Lizotte-Waniewski MR, Foster J, Guiliano D, Daub J, Scott AL, et al. (2000) The filarial genome project: analysis of the nuclear, mitochondrial and endosymbiont genomes of Brugia malayi. Int J Parasitol 30: 411–419. pmid:10731564 doi: 10.1016/s0020-7519(00)00014-x
[5]  Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, et al. (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317: 1756–1760. pmid:17885136 doi: 10.1126/science.1145406
[6]  Dhar R, Sagesser R, Weikert C, Wagner A (2013) Yeast adapts to a changing stressful environment by evolving cross-protection and anticipatory gene regulation. Mol Biol Evol. 30: 573–588. doi: 10.1093/molbev/mss253. pmid:23125229
[7]  Telonis-Scott M, Clemson AS, Johnson TK, Sgro CM (2014) Spatial analysis of gene regulation reveals new insights into the molecular basis of upper thermal limits. Mol Ecol 23: 6135–6151. doi: 10.1111/mec.13000. pmid:25401770
[8]  Silver JT, Noble EG (2012) Regulation of survival gene hsp70. Cell Stress Chaperones. 17: 1–9. doi: 10.1007/s12192-011-0290-6. pmid:21874533
[9]  Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18: 1509–1517. doi: 10.1101/gr.079558.108. pmid:18550803
[10]  O'Neill M, Geary JF, Agnew DW, Mackenzie CD, Geary TG (2015) In vitro flubendazole-induced damage to vital tissues in adult females of the filarial nematode Brugia malayi. Int J Parasitol: Drugs Drug Resist 5: 135–140. doi: 10.1016/j.ijpddr.2015.06.002
[11]  O'Connell EM, Bennuru S, Steel C, Dolan MA, Nutman TB (2015) Targeting filarial Abl-like kinases: Orally available, food and drug administration-approved tyrosine kinase inhibitors are microfilaricidal and macrofilaricidal. J Infect Dis 212: 684–693. doi: 10.1093/infdis/jiv065. pmid:25657255
[12]  Taylor J, Schenck I, Blankenberg D, Nekrutenko A (2007) Using galaxy to perform large-scale interactive data analyses. In: Current Protocols in Bioinformatics, Suppl. 19, pp. 10.5.1–10.5.25.
[13]  Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M et al. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Current Protocols in Molecular Biology, 19.10.1–19.10.21. doi: 10.1002/0471142727.mb1910s89
[14]  Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. doi: 10.1093/bioinformatics/btp616. pmid:19910308
[15]  Xia J, Gill EE, Hancock RE (2015) NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat Protocols 10: 823–844. doi: 10.1038/nprot.2015.052
[16]  Xia J, Benner MJ, Hancock RE (2014) NetworkAnalyst—integrative approaches for protein-protein interaction network analysis and visual exploration. Nucl Acids Res. 42: W167–174. doi: 10.1093/nar/gku443. pmid:24861621
[17]  Anders S, Pyl PT, Huber W (2014) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169. doi: 10.1093/bioinformatics/btu638. pmid:25260700
[18]  Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11: R25. doi: 10.1186/gb-2010-11-3-r25. pmid:20196867
[19]  Robinson MD, Smyth GK (2007) Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9: 321–332. pmid:17728317 doi: 10.1093/biostatistics/kxm030
[20]  Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: A practical and powerful approach to multiple testing. J Roy Stat Soc Series B 57: 289–300.
[21]  Harris TW, Lee R, Schwarz E, Bradnam K, Lawson D, Chen W et al. (2003) WormBase: a cross-species database for comparative genomics. Nucl Acids Res 31: 133–137. pmid:12519966 doi: 10.1093/nar/gkg053
[22]  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25: 25–29. pmid:10802651 doi: 10.1038/75556
[23]  Martin J, Abubucker S, Wylie T, Yin Y, Wang Z, Mitreva M (2009) Nematode.net update 2008: improvements enabling more efficient data mining and comparative nematode genomics. Nucl Acids Res 37: D571–578. doi: 10.1093/nar/gkn744. pmid:18940860
[24]  Wylie T, Martin JC, Dante M, Mitreva MD, Clifton SW, Chinwalla A et al. (2004) Nematode.net: a tool for navigating sequences from parasitic and free-living nematodes. Nucl Acids Res. 32: D423–426. pmid:14681448
[25]  Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S et al. (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucl Acids Res 39: W316–322. doi: 10.1093/nar/gkr483. pmid:21715386
[26]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. pmid:11846609 doi: 10.1006/meth.2001.1262
[27]  McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucl Acids Res 40: 4288–4297. doi: 10.1093/nar/gks042. pmid:22287627
[28]  Shin H, Lee H, Fejes AP, Baillie DL, Koo HS, Jones SJ (2011) Gene expression profiling of oxidative stress response of C. elegans aging defective AMPK mutants using massively parallel transcriptome sequencing. BMC Res Notes 4: 34. doi: 10.1186/1756-0500-4-34. pmid:21303547
[29]  Choi YJ, Ghedin E, Berriman M, McQuillan J, Holroyd N, Mayhew GF et al. (2011) A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi. PLoS-Negl Trop Dis 5: e1409. doi: 10.1371/journal.pntd.0001409. pmid:22180794
[30]  Johnstone IL (1994) The cuticle of the nematode Caenorhabditis elegans: a complex collagen structure. Bioessays 16: 171–178. pmid:8166670 doi: 10.1002/bies.950160307
[31]  Page AP, Johnstone IL (2007) The cuticle WormBook, ed. The C. elegans Research Community, WormBook, doi: 10.1895/wormbook.1.138.1. ,
[32]  Thompson DP, Geary TG (2003) Helminth surfaces: structural, molecular and functional properties. In: Molecular Medical Parasitology (Marr JJ, Komuniecki R, Eds.), Academic Press, Oxford, UK, pp. 297–338.
[33]  Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407: 923–926. pmid:11057674 doi: 10.1038/35038119
[34]  Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG et al. (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276: 33293–33296. pmid:11435447 doi: 10.1074/jbc.r100016200
[35]  Yenbutr P, Scott AL (1995) Molecular cloning of a serine proteinase inhibitor from Brugia malayi. Infect Immun 63: 1745–1753. pmid:7729881
[36]  Zang X, Yazdanbakhsh M, Jiang H, Kanost MR, Maizels RM (1999) A novel serpin expressed by blood-borne microfilariae of the parasitic nematode Brugia malayi inhibits human neutrophil serine proteinases. Blood 94: 1418–1428. pmid:10438730
[37]  Molehin AJ, Gobert GN, McManus DP (2012) Serine protease inhibitors of parasitic helminths. Parasitology 139: 681–695. doi: 10.1017/S0031182011002435. pmid:22310379
[38]  Moreno Y, Geary TG (2008) Stage- and gender-specific proteomic analysis of Brugia malayi excretory-secretory products. PLoS-Negl Trop Dis 2: e326. doi: 10.1371/journal.pntd.0000326. pmid:18958170
[39]  Bennuru S, Semnani R, Meng Z, Ribeiro JM, Veenstra TD, Nutman TB (2009) Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling. PLoS-Negl Trop Dis 3: e410. doi: 10.1371/journal.pntd.0000410. pmid:19352421
[40]  Zang X, Atmadja AK, Gray P, Allen JE, Gray CA, Lawrence RA et al. (2000) The serpin secreted by Brugia malayi microfilariae, Bm-SPN-2, elicits strong, but short-lived, immune responses in mice and humans. J Immunol 165: 5161–5169. pmid:11046048 doi: 10.4049/jimmunol.165.9.5161
[41]  Maizels RM, Gomez-Escobar N, Gregory WF, Murray J, Zang X (2001) Immune evasion genes from filarial nematodes. Int J Parasitol 31: 889–898. pmid:11406138 doi: 10.1016/s0020-7519(01)00213-2
[42]  Luke CJ, Pak SC, Askew YS, Naviglia TL, Askew DJ, Nobar SM et al. (2007) An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell 130:1108–1119. pmid:17889653 doi: 10.1016/j.cell.2007.07.013
[43]  Vazquez-Mendoza A, Carrero JC, Rodriguez-Sosa M (2013) Parasitic infections: a role for C-type lectins receptors. BioMed Res Int 2013:456352. doi: 10.1155/2013/456352. pmid:23509724
[44]  Engering A, Geijtenbeek TB, van Kooyk Y (2002) Immune escape through C-type lectins on dendritic cells. Trends Immunol 23: 480–485. pmid:12297419 doi: 10.1016/s1471-4906(02)02296-2
[45]  Hao L, Johnsen R, Lauter G, Baillie D, Burglin TR (2006) Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC Genomics 7: 280. pmid:17076889 doi: 10.1186/1471-2164-7-280
[46]  Li BW, Rush AC, Mitreva M, Yin Y, Spiro D, Ghedin E et al. (2009) Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3. BMC Genomics 10: 267. doi: 10.1186/1471-2164-10-267. pmid:19527522
[47]  Schlee M, Krug T, Gires O, Zeidler R, Hammerschmidt W, Mailhammer R et al. (2004) Identification of Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA2) target proteins by proteome analysis: activation of EBNA2 in conditionally immortalized B cells reflects early events after infection of primary B cells by EBV. J Virol 78: 3941–3952. pmid:15047810 doi: 10.1128/jvi.78.8.3941-3952.2004
[48]  Gordadze AV, Peng R, Tan J, Liu G, Sutton R, Kempkes B et al. (2001) Notch1IC partially replaces EBNA2 function in B cells immortalized by Epstein-Barr virus. J Virol 75: 5899–5912. pmid:11390591 doi: 10.1128/jvi.75.13.5899-5912.2001
[49]  Bi P, Kuang S (2015) Notch signaling as a novel regulator of metabolism. Trends Endocrinol Metab 26: 248–255. doi: 10.1016/j.tem.2015.02.006. pmid:25805408
[50]  Kurz EM, Holstein TW, Petri BM, Engel J, David CN (1991) Mini-collagens in hydra nematocytes. J Cell Biol 115: 1159–1169. pmid:1955459 doi: 10.1083/jcb.115.4.1159
[51]  Razin SV, Borunova VV, Maksimenko OG, Kantidze OL (2012) Cys2His2 zinc finger protein family: classification, functions, and major members. Biochem Biokhim 77: 217–226. doi: 10.1134/s0006297912030017
[52]  Gonzalez Montoro A, Quiroga R, Valdez Taubas J (2013) Zinc co-ordination by the DHHC cysteine-rich domain of the palmitoyltransferase Swf1. Biochem J 454: 427–435. doi: 10.1042/BJ20121693. pmid:23790227
[53]  Li C, Kim K (2014). Family of FLP peptides in Caenorhabditis elegans and related nematodes. Front Endocrinol 5: 150. doi: 10.3389/fendo.2014.00150
[54]  Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. J Neurobiol 49: 235–244. pmid:11745661 doi: 10.1002/neu.1078
[55]  Davis RE, Stretton AO (2001) Structure-activity relationships of 18 endogenous neuropeptides on the motor nervous system of the nematode Ascaris suum. Peptides. 22: 7–23. pmid:11179593 doi: 10.1016/s0196-9781(00)00351-x
[56]  Broadbent ID, Pettitt J (2002) The C. elegans hmr-1 gene can encode a neuronal classic cadherin involved in the regulation of axon fasciculation. Curr Biol 12: 59–63. pmid:11790304 doi: 10.1016/s0960-9822(01)00624-8
[57]  Najarro EH, Wong L, Zhen M, Carpio EP, Goncharov A, Garriga G et al. (2012) Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development. J Neurosci 32: 4196–4211. doi: 10.1523/JNEUROSCI.3094-11.2012. pmid:22442082
[58]  Schmitz C, Wacker I, Hutter H (2008) The Fat-like cadherin CDH-4 controls axon fasciculation, cell migration and hypodermis and pharynx development in Caenorhabditis elegans. Develop Biol 316: 249–259. doi: 10.1016/j.ydbio.2008.01.024. pmid:18328472
[59]  Schmitz C, Kinge P, Hutter H (2007) Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proc Natl Acad Sci (USA) 104: 834–839. doi: 10.1073/pnas.0510527104
[60]  Wu Z, Ghosh-Roy A, Yanik MF, Zhang JZ, Jin Y, Chisholm AD (2007) Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci (USA) 104: 15132–15137. doi: 10.1073/pnas.0707001104
[61]  Gabel CV, Antoine F, Chuang CF, Samuel AD, Chang C (2008) Distinct cellular and molecular mechanisms mediate initial axon development and adult-stage axon regeneration in C. elegans. Development 135: 1129–1136. doi: 10.1242/dev.013995. pmid:18296652
[62]  Kubota Y, Sano M, Goda S, Suzuki N, Nishiwaki K (2006). The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133: 263–273. pmid:16354716 doi: 10.1242/dev.02195
[63]  Kubota Y, Nishiwaki K (2006) C. elegans as a model system to study the function of the COG complex in animal development. Biol Chem 387: 1031–1035. pmid:16895472 doi: 10.1515/bc.2006.127
[64]  Kovacevic I, Ho R, Cram EJ (2012) CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans. Mechan Develop 128: 548–559. doi: 10.1016/j.mod.2012.01.003. pmid:22285439
[65]  Gupta MC, Graham PL, Kramer JM (1997). Characterization of alpha1(IV) collagen mutations in Caenorhabditis elegans and the effects of alpha1 and alpha2(IV) mutations on type IV collagen distribution. J Cell Biol 137: 1185–1196. pmid:9166417 doi: 10.1083/jcb.137.5.1185
[66]  Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15: 7–10. pmid:8136014 doi: 10.1016/0167-5699(94)90018-3
[67]  Ratan RR, Baraban JM (1995) Apoptotic death in an in vitro model of neuronal oxidative stress. Clin Exper Pharmacol Physiol 22: 309–310. doi: 10.1111/j.1440-1681.1995.tb02006.x
[68]  Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Rad Biol Med 29: 323–333. pmid:11035261 doi: 10.1016/s0891-5849(00)00302-6
[69]  Rodriguez M, Snoek LB, De Bono M, Kammenga JE (2013) Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genetics 29: 367–374. doi: 10.1016/j.tig.2013.01.010
[70]  Rohlfing AK, Miteva Y, Moronetti L, He L, Lamitina T (2011) The Caenorhabditis elegans mucin-like protein OSM-8 negatively regulates osmosensitive physiology via the transmembrane protein PTR-23. PLoS-Genetics 7: e1001267. doi: 10.1371/journal.pgen.1001267. pmid:21253570

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133