全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals

DOI: 10.1371/journal.pntd.0004339

Full-Text   Cite this paper   Add to My Lib

Abstract:

The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5’-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5’-monophosphate (GMP) to inosine 5’-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR’s was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis.

References

[1]  Hedstrom L. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)8 barrel enzymes. Crit Rev Biochem Mol Biol. 2012;47: 250–63.
[2]  Ceron CR, Caldas RD, Felix CR, Mundim MH, Roitman I. Purine metabolism in trypanosomatids. J Protozool. 1979;26: 479–483. pmid:395295 doi: 10.1111/j.1550-7408.1979.tb04657.x
[3]  Martinelli LKB, Ducati RG, Rosado LA, Breda A, Selbach BP, Santos DS, et al. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation. Mol Biosyst. 2011;7: 1289–1305. doi: 10.1039/c0mb00245c. pmid:21298178
[4]  Patton GC, Stenmark P, Gollapalli DR, Sevastik R, Kursula P, Flodin S, et al. Cofactor mobility determines reaction outcome in the IMPDH and GMPR (β-α)8 barrel enzymes. Nature Chemical Biology. 2011. pp. 950–958. doi: 10.1038/nchembio.693. pmid:22037469
[5]  Berg M, Van der Veken P, Goeminne A, Haemers A, Augustyns K. Inhibitors of the purine salvage pathway: a valuable approach for antiprotozoal chemotherapy? Current medicinal chemistry. 2010. pp. 2456–2481. doi: 10.2174/092986710791556023. pmid:20491648
[6]  Fish WR, Looker DL, Marr JJ, Berens RL. Purine metabolism in the bloodstream forms of Trypanosoma gambiense and Trypanosoma rhodesiense. Biochim Biophys Acta. 1982;719: 223–231. pmid:6817814 doi: 10.1016/0304-4165(82)90092-7
[7]  Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2009;38. doi: 10.1093/nar/gkp851.
[8]  Logan-Klumpler FJ, De Silva N, Boehme U, Rogers MB, Velarde G, McQuillan JA, et al. GeneDB-an annotation database for pathogens. Nucleic Acids Res. 2012;40. doi: 10.1093/nar/gkr1032.
[9]  Shuto S, Haramuishi K, Fukuoka M, Matsuda A. Synthesis of sugar-modified analogs of bredinin (mizoribine), a clinically useful immunosuppressant, by a novel photochemical imidazole ring-cleavage reaction as the key step. J Chem Soc Perkin Trans 1. 2000;16: 3603–3609. doi: 10.1039/b005510g.
[10]  Hirumi H, Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol. 1989;75: 985–989. pmid:2614608 doi: 10.2307/3282883
[11]  Bessho T, Morii S, Kusumoto T, Shinohara T, Noda M, Uchiyama S, et al. Characterization of the novel Trypanosoma brucei inosine 5’-monophosphate dehydrogenase. Parasitology. 2013;140: 735–45. doi: 10.1017/S0031182012002090. pmid:23369253
[12]  Sigrist CJA, Cerutti L, De Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, et al. PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 2009;38. doi: 10.1093/nar/gkp885.
[13]  Gould SJ, Keller GA, Hosken N, Wilkinson J, Subramani S. A conserved tripeptide sorts proteins to peroxisomes. J Cell Biol. 1989;108: 1657–1664. doi: 10.1083/jcb.108.5.1657. pmid:2654139
[14]  Moyersoen J, Choe J, Fan E, Hol WGJ, Michels PAM. Biogenesis of peroxisomes and glycosomes: Trypanosomatid glycosome assembly is a promising new drug target. FEMS Microbiology Reviews. 2004. pp. 603–643. doi: 10.1016/j.femsre.2004.06.004.
[15]  Haanstra JR, Bakker BM, Michels PAM. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei. Mol Biochem Parasitol. 2014;198: 18–28. doi: 10.1016/j.molbiopara.2014.11.004. pmid:25476771
[16]  Wang X-L, Xu R, Lu Z-R. A peptide-targeted delivery system with pH-sensitive amphiphilic cell membrane disruption for efficient receptor-mediated siRNA delivery. J Control Release. 2009;134: 207–13. doi: 10.1016/j.jconrel.2008.11.010. pmid:19135104
[17]  Sintchak MD, Fleming MA, Futer O, Raybuck SA, Chambers SP, Caron PR, et al. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell. 1996;85: 921–930. doi: 10.1016/S0092-8674(00)81275-1. pmid:8681386
[18]  Hedstrom L. IMP dehydrogenase: mechanism of action and inhibition. Chem Rev. 2009;109: 2903–2928. doi: 10.1021/cr900021w. pmid:19480389
[19]  Jensen BC, Ramasamy G, Vasconcelos EJ, Ingolia NT, Myler PJ, Parsons M. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics. 2014;15: 911. doi: 10.1186/1471-2164-15-911. pmid:25331479
[20]  Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GAM. Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res. 2010;38: 4946–4957. doi: 10.1093/nar/gkq237. pmid:20385579
[21]  Nilsson D, Gunasekera K, Mani J, Osteras M, Farinelli L, Baerlocher L, et al. Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog. 2010;6: 21–22. doi: 10.1371/journal.ppat.1001037.
[22]  Queiroz R, Benz C, Fellenberg K, Hoheisel JD, Clayton C. Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics. 2009;10: 495. doi: 10.1186/1471-2164-10-495. pmid:19857263
[23]  Jensen BC, Sivam D, Kifer CT, Myler PJ, Parsons M. Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics. 2009;10: 482. doi: 10.1186/1471-2164-10-482. pmid:19840382
[24]  Güther MLS, Urbaniak MD, Tavendale A, Prescott A, Ferguson MAJ, Lucia M, et al. High confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res. 2014;13: 2796–2806. doi: 10.1021/pr401209w. pmid:24792668
[25]  Colasante C, Ellis M, Ruppert T, Voncken F. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. Proteomics. 2006;6: 3275–3293. doi: 10.1002/pmic.200500668. pmid:16622829
[26]  Ignoul S, Eggermont J. CBS domains: structure, function, and pathology in human proteins. Am J Physiol Cell Physiol. 2005;289: C1369–C1378. doi: 10.1152/ajpcell.00282.2005. pmid:16275737
[27]  Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, Ali Hassan AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344: 1823–1831. doi: 10.1056/NEJM200106143442403. pmid:11407343
[28]  Scott JW, Hawley SA, Green KA, Anis M, Stewart G, Scullion GA, et al. CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest. 2004;113: 274–284. doi: 10.1172/JCI200419874. pmid:14722619
[29]  Sullivan WJ, Dixon SE, Li C, Striepen B, Queener SF. IMP dehydrogenase from the protozoan parasite Toxoplasma gondii. Antimicrob Agents Chemother. 2005;49: 2172–2179. doi: 10.1128/AAC.49.6.2172–2179.2005. pmid:15917510
[30]  Thomas EC, Gunter JH, Webster JA, Schieber NL, Oorschot V, Parton RG, et al. Different characteristics and nucleotide binding properties of inosine monophosphate dehydrogenase (IMPDH) isoforms. PLoS One. 2012;7. doi: 10.1371/journal.pone.0051096.
[31]  Bowne SJ, Sullivan LS, Blanton SH, Cepko CL, Blackshaw S, Birch DG, et al. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) cause the RP10 form of autosomal dominant retinitis pigmentosa. Hum Mol Genet. 2002;11: 559–568. pmid:11875050 doi: 10.1093/hmg/11.5.559
[32]  Kennan A, Aherne A, Palfi A, Humphries M, McKee A, Stitt A, et al. Identification of an IMPDH1 mutation in autosomal dominant retinitis pigmentosa (RP10) revealed following comparative microarray analysis of transcripts derived from retinas of wild-type and Rho(-/-) mice. Hum Mol Genet. 2002;11: 547–557. pmid:11875049 doi: 10.1093/hmg/11.5.547
[33]  De Koning HP, Bridges DJ, Burchmore RJS. Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev. 2005;29: 987–1020. doi: 10.1016/j.femsre.2005.03.004. pmid:16040150
[34]  Lüscher A, Onal P, Schweingruber A-M, M?ser P. Adenosine kinase of Trypanosoma brucei and its role in susceptibility to adenosine antimetabolites. Antimicrob Agents Chemother. 2007;51: 3895–901. doi: 10.1128/AAC.00458-07. pmid:17698621
[35]  Vodnala M, Fijolek A, Rofougaran R, Mosimann M, M?ser P, Hofer A. Adenosine kinase mediates high affinity adenosine salvage in Trypanosoma brucei. J Biol Chem. 2008;283: 5380–8. doi: 10.1074/jbc.M705603200. pmid:18167353
[36]  Willis RC, Carson DA, Seegmiller JE. Adenosine kinase initiates the major route of ribavirin activation in a cultured human cell line. Proc Natl Acad Sci U S A. 1978;75: 3042–4.
[37]  Goswami BB, Borek E, Sharma OK, Fujitaki J, Smith RA. The broad spectrum antiviral agent ribavirin inhibits capping of mRNA. Biochem Biophys Res Commun. 1979;89: 830–836. doi: 10.1016/0006-291X(79)91853-9. pmid:226095

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133