全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

DOI: 10.1371/journal.pntd.0004373

Full-Text   Cite this paper   Add to My Lib

Abstract:

The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis.

References

[1]  Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012; 7: e35671. pmid:22693548 doi: 10.1371/journal.pone.0035671
[2]  Alexander J and Russell DG. The interaction of Leishmania species with macrophages. Advances in Parasitology. 1992; 31: 174–254 doi: 10.1016/s0065-308x(08)60022-6
[3]  Desjardins M and Descoteaux A. Survival strategies of Leishmania donovani in mammalian host macrophages. Res. Immunol. 1998; 149: 689–692. pmid:9851525 doi: 10.1016/s0923-2494(99)80040-6
[4]  Welburn SC, Barcinski MA and Williams GT. Programmed cell death in Trypansomatids. Parasitol. Today. 1997; 13: 22–26. pmid:15275162 doi: 10.1016/s0169-4758(96)10076-4
[5]  Welburn SC and Maudlin I. Control of Trypanosoma brucei brucei infections in tsetse, Glossina morsitans. Med. Vet. Entomol. 1997; 11: 286–289. pmid:9330261 doi: 10.1111/j.1365-2915.1997.tb00408.x
[6]  Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 2001; 41: 367–401. pmid:11264462 doi: 10.1146/annurev.pharmtox.41.1.367
[7]  Alzate JF, Arias AA, Moreno-Mateos D, Alvarez-Barrientos A, Jimenez-Ruiz A. Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum. Mol Biochem Parasitol. 2007; 152: 192–202. pmid:17300844 doi: 10.1016/j.molbiopara.2007.01.006
[8]  Moreira ME, Del Portillo HA, Milder RV, Balanco JM, Barcinski MA. Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol. 1996; 167: 305–313. pmid:8613472 doi: 10.1002/(sici)1097-4652(199605)167:2<305::aid-jcp15>3.3.co;2-p
[9]  Raina P, Kaur S. Chronic heat-shock treatment driven differentiation induces apoptosis in Leishmania donovani. Mol Cell Biochem. 2006; 289: 83–90. pmid:16718376 doi: 10.1007/s11010-006-9151-5
[10]  Das M, Mukherjee SB, Shaha C. Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci. 2001; 114: 2461–2469. pmid:11559754
[11]  Irigoin F, Inada NM, Fernandes MP, Piacenza L, Gadelha FR, Vercesi AE et al. Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi. Biochem J. 2009; 418: 595–604. doi: 10.1042/BJ20081981. pmid:19053945
[12]  Mukherjee SB, Das M, Sudhandiran G, Shaha C. Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J Biol Chem. 2002; 277: 24717–24727. pmid:11983701 doi: 10.1074/jbc.m201961200
[13]  Ridgley EL, Xiong ZH, Ruben L. Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei. Biochem J. 1999; 340: 33–40. pmid:10229656 doi: 10.1042/bj3400033
[14]  De Souza EM, Menna-Barreto R, Araujo-Jorge TC, Kumar A, Hu Q, Boykin DW, Soeiro MN. Antiparasitic activity of aromatic diamidines is related to apoptosis-like death in Trypanosoma cruzi. Parasitology. 2006; 133: 75–79. pmid:16563202 doi: 10.1017/s0031182006000084
[15]  Paris C, Loiseau PM, Bories C, Breard J: Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother. 2004; 48: 852–859. pmid:14982775 doi: 10.1128/aac.48.3.852-859.2004
[16]  Alvarez VE, Kosec G, Sant’Anna C, Turk V, Cazzulo JJ, Turk B. Autophagy is involved in nutritional stress response and differentiation in Trypanosoma cruzi. J Biol Chem. 2008; 283: 3454–3464. pmid:18039653 doi: 10.1074/jbc.m708474200
[17]  Jimenez V, Paredes R, Sosa MA, Galanti N. Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures. J Cell Biochem. 2008; 105: 688–698. doi: 10.1002/jcb.21864. pmid:18668509
[18]  Zangger H, Mottram JC, Fasel N. Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis? Cell Death Differ. 2002; 9: 1126–1139. pmid:12232801 doi: 10.1038/sj.cdd.4401071
[19]  Kulkarni MM, McMaster WR, Kamysz W, McGwire BS. Antimicrobial peptide induced apoptotic death of Leishmania results from calcium-dependent, caspase-independent mitochondrial toxicity. J Biol Chem. 2009; 284: 15496–15504. doi: 10.1074/jbc.M809079200. pmid:19357081
[20]  Luque-Ortega JR, Cruz LJ, Albericio F, Rivas L. The Antitumoral Depsipeptide IB-01212 Kills Leishmania through an Apoptosis-like Process Involving Intracellular Targets. Mol Pharm. 2010; 5: 1608–1617. doi: 10.1021/mp100035f
[21]  Deponte M: Programmed cell death in protists. Biochim Biophys Acta. 2008; 1783:1396–1405. doi: 10.1016/j.bbamcr.2008.01.018. pmid:18291111
[22]  Duszenko M, Figarella K, Macleod ET, Welburn SC. Death of a trypanosome: a selfish altruism. Trends Parasitol. 2006; 22: 536–542. pmid:16942915 doi: 10.1016/j.pt.2006.08.010
[23]  Wanderley Joa? Luiz M., Barcinski Marcello A. Apoptosis and apoptotic mimicry: the Leishmania connection. Cell Mol Life Sci. 2010; 10: 1653–9. doi: 10.1007/s00018-010-0291-0
[24]  Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ. 2002; 9: 53–64. pmid:11803374 doi: 10.1038/sj.cdd.4400952
[25]  Bejarano J, Espino SD, Paredes á, Ortiz G, Pariente Lozano JA, Apoptosis Rodríguez AB., ROS and Calcium Signaling in Human Spermatozoa: Relationship to Infertility, Male Infertility 2012, Bashamboo Anu Dr. (Ed.), ISBN: 978-953-51-0562-6: 51–76.
[26]  Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casera RA Jr. The natural polyamine spermine functions directly as a free radical scavenge. Proc Natl Acad Sci. 1998; 95: 11140–45. pmid:9736703 doi: 10.1073/pnas.95.19.11140
[27]  Fujisawa S, Kadoma Y. Kinetic evaluation of polyamines as radical scavengers. Anticancer Res. 2005; 25: 965–70. pmid:15868935
[28]  Landfear SM. Nutrient Transport and Pathogenesis in Selected Parasitic Protozoa. Eukaryot Cell. 2011; 4: 483–93. doi: 10.1128/ec.00287-10
[29]  Alenzi FQB. Links between apoptosis, proliferation and the cell cycle. British Journal of Biomedical Science. 2004; 61: 1–4.
[30]  Gong H, Zo¨lzer F, von Recklinghausen G., Havers W and Schweigerer L. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia. 2000; 14: 826–829. pmid:10803513 doi: 10.1038/sj.leu.2401763
[31]  Szlosarek PW, Klabatsa A, Pallaska A, Sheaff M, Smith P, Crook T et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res. 2006;12: 7126–31. pmid:17145837 doi: 10.1158/1078-0432.ccr-06-1101
[32]  Piacenza L, Peluffo G and Rafael RR. L-Arginine-dependent suppression of apoptosis in Trypanosoma cruzi: Contribution of the nitric oxide and polyamine pathways. PNAS. 2001; 98: 7301–7306. pmid:11404465 doi: 10.1073/pnas.121520398
[33]  Das S, Pandey K, Kumar A, Sardar AH, Purkait B, Kumar M et al. TGF-β1 re-programs TLR4 signaling in L. donovani infection: enhancement of SHP-1 and ubiquitin-editing enzyme A20. Immunol Cell Biol. 2012; 90: 640–54. doi: 10.1038/icb.2011.80. pmid:21968712
[34]  Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65: 55–63. pmid:6606682 doi: 10.1016/0022-1759(83)90303-4
[35]  Purkait B, Kumar A, Nandi N, Sardar AH, Das S, Kumar S et al. Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother. 2012; 56: 1031–41. doi: 10.1128/AAC.00030-11. pmid:22123699
[36]  Browne CD, Hindmarsh EJ, Smith JW. Inhibition of endothelial cell proliferation and angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J. 2006; 20: 2027–35. pmid:17012255 doi: 10.1096/fj.05-5404com
[37]  Castilho-Martins EA, Laranjeira da Silva MF, dos Santos MG, Muxel SM, Floeter-Winter LM. Axenic Leishmania amazonensis Promastigotes Sense both the External and Internal Arginine Pool Distinctly Regulating the Two Transporter-Coding Genes. PLoS ONE. 2011; 11: e27818. doi: 10.1371/journal.pone.0027818.
[38]  Corraliza IM, Campo ML, Soler G, Modolell M. Determination of arginase activity in macrophages: a micromethod. J Immunol Methods. 1994; 174: 231–5. pmid:8083527 doi: 10.1016/0022-1759(94)90027-2
[39]  Reguera RM, Bala?a-Fouce R, Showalter M, Hickerson S, Beverley SM. Leishmania major lacking Arginase (ARG) are auxotrophic for polyamines but retain infectivity to susceptible BALB/c mice. Mol Biochem Parasitol. 2009; 165: 48–56. doi: 10.1016/j.molbiopara.2009.01.001. pmid:19393161
[40]  Bala?a-Fouce R, Escribano MI, Alunda JM. Leishmania infantum: polyamine biosynthesis and levels during the growth of promastigotes. Int J Biochem. 1991; 23: 1213–7. pmid:1794446 doi: 10.1016/0020-711x(91)90218-c
[41]  Das S, Pandey K, Rabidas VN, Mandal A, Das P. Effectiveness of miltefosine treatment in targeting anti-leishmanial HO-1/Nrf-2 mediated oxidative responses in visceral leishmaniasis patients. J Antimicrob Chemother. 2013; 68: 2059–65. doi: 10.1093/jac/dkt162. pmid:23729024
[42]  Shimasaki H. Assay of fluorescent lipid peroxidation products. Methods Enzymol. 1994; 233: 338–46. pmid:8015468 doi: 10.1016/s0076-6879(94)33039-5
[43]  Sardar AH, Das S, Agnihorti S, Kumar M, Ghosh AK, Abhishek K et al. Spinigerin induces apoptotic like cell death in a caspase independent manner in Leishmania donovani. Exp Parasitol. 2013; 135: 715–25. doi: 10.1016/j.exppara.2013.10.011. pmid:24184774
[44]  Mukhopadhyay R, Dey S, Xu N, Gage D, Lightbody J, Ouellette M, and Rosen BP. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc. Natl. Acad. Sci. 1996; 93: 10383–10387 pmid:8816809 doi: 10.1073/pnas.93.19.10383
[45]  Koulajian K, Desai T, Liu GC, Ivovic A, Patterson JN, Tang C et al. NADPH oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents. Diabetologia. 2013; 56: 1078–87. doi: 10.1007/s00125-013-2858-4. pmid:23429921
[46]  Das S, Ghosh AK, Singh S, Saha B, Ganguly A, Das P. Unmethylated CpG motifs in the L. donovani DNA regulate TLR9-dependent delay of programmed cell death in macrophages. J Leukoc Biol. 2015; 97: 363–78. doi: 10.1189/jlb.4A0713-378RR. pmid:25473100
[47]  Kumar A, Das S, Purkait B, Sardar AH, Ghosh AK, Dikhit MRet al. Ascorbate peroxidase, a key molecule regulating amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother. 2014; 58: 6172–84. doi: 10.1128/AAC.02834-14. pmid:25114128
[48]  Ozbilgin A, Ozbel Y, Alkan MZ, Atambay M, Ozcel MA. Cultivation of Leishmania sp. in nutrient broth. J Egypt Soc Parasitol. 1995; 25: 437–41. pmid:7665939
[49]  Steiger RF, Steiger E. Cultivation of Leishmania donovani and Leishmania braziliensis in defined media: nutritional requirements. J Protozool. 1977; 24: 437–41. pmid:915847 doi: 10.1111/j.1550-7408.1977.tb04771.x
[50]  Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010; 6: 749–62. doi: 10.1016/j.freeradbiomed.2009.12.022
[51]  Mandal G, Wyllie S, Singh N, Sundar S, Fairlamb AH, Chatterjee M. Increased levels of thiols protect antimony unresponsive Leishmania donovani field isolates against reactive oxygen species generated by trivalent antimony. Parasitology. 2007; 134: 1679–87. pmid:17612420 doi: 10.1017/s0031182007003150
[52]  Mukherjee S, Bandyapadhyay R, Basu MK. Leishmania donovani: superoxide dismutase level in infected macrophages. Biosci Rep. 1988; 8: 131–7. pmid:3408810 doi: 10.1007/bf01116457
[53]  Ying W. NAD+/NADH and NADP+/NADPH in Cellular Functions and Cell Death: Regulation and Biological Consequences. Antioxidants & Redox Signaling. 2008; 2: 179–206. doi: 10.1089/ars.2007.1672
[54]  Mehta A, Shaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem. 2004; 279: 11798–813. pmid:14679210 doi: 10.1074/jbc.m309341200
[55]  Compton MM. A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev. 1992; 11: 105–19. pmid:1327565 doi: 10.1007/bf00048058
[56]  Krassner SM, Flory B. Essential amino acids in the culture of Leishmania tarentolae. J Parasitol. 1971; 57: 917–20. pmid:5568347 doi: 10.2307/3277829
[57]  Steiger RF, Meshnick SR. Amino-acid and glucose utilization of Leishmania donovani and L. braziliensis. Trans R Soc Trop Med Hyg. 1977; 5: 441–3. doi: 10.1016/0035-9203(77)90049-9
[58]  Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005; 309: 436–442. pmid:16020728 doi: 10.1126/science.1112680
[59]  Shaked-Mishan P, Suter-Grotemeyer M, Yoel-Almagor T, Holland N, Zilberstein D, Rentsch D. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol Microbiol. 2006; 60: 30–8. pmid:16556218 doi: 10.1111/j.1365-2958.2006.05060.x
[60]  Fox BA, Gigley JP, Bzik DJ. Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. Int J Parasitol. 2004; 34: 323–331. pmid:15003493 doi: 10.1016/j.ijpara.2003.12.001
[61]  Darlyuk I, Goldman A, Roberts SC, Ullman B, Rentsch D, Zilberstein D. Arginine homeostasis and transport in the human pathogen Leishmania donovani. J Biol Chem. 2009; 284: 19800–7. doi: 10.1074/jbc.M901066200. pmid:19439418
[62]  Colotti G, Ilari A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids. 2011; 40: 269–285. doi: 10.1007/s00726-010-0630-3. pmid:20512387
[63]  Filomeni G, De Zio D and Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death and Differentiation. 2015; 22: 377–388. doi: 10.1038/cdd.2014.150. pmid:25257172
[64]  Das R, Roy A, Dutta N, Majumder HK. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis. 2008; 13: 867–882. doi: 10.1007/s10495-008-0224-7. pmid:18506627
[65]  Garrel C, Ceballos-Picot I, Germain G, Al-Gubory KH. Oxidative stress-inducible antioxidant adaptive response during prostaglandin F2alpha-induced luteal cell death in vivo. Free Radic Res. 2007; 41: 251–259. pmid:17364952 doi: 10.1080/10715760601067493
[66]  Ghosh S, Goswami S, Adhya S. Role of superoxide dismutase in survival of Leishmania within the macrophage; Biochem J. 2003; 369: 447–452. pmid:12459037 doi: 10.1042/bj20021684
[67]  Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Ameisen JC. On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ. 2002; 9: 65–81. pmid:11803375 doi: 10.1038/sj.cdd.4400951
[68]  Koya RC, Fujita H, Shimizu S, Ohtsu M, Takimoto M, Tsujimoto Y et al. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem. 2000; 275: 15343–9. pmid:10809769 doi: 10.1074/jbc.275.20.15343
[69]  Sen N, Das BB, Ganguly A, Mukherjee T, Bandyopadhyay S and Majumder HK. Camptothecin-induced imbalance in intracellular cation homeostasis regulates programmed cell death in unicellular hemoflagellate Leishmania donovani. J. Biol. Chem. 2004; 279: 52366–52375. pmid:15355995 doi: 10.1074/jbc.m406705200
[70]  Dolai S, Pal S, Yadav RK, Adak S. Endoplasmic reticulum stress induced apoptosis in Leishmania through Ca2+-dependent and caspase-independent mechanism. J Biol Chem. 2011; 286: 13638–46. doi: 10.1074/jbc.M110.201889. pmid:21330370

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133