全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Decomposition of Generalized Asymmetry Model for Square Contingency Tables

DOI: 10.4236/ojs.2016.63036, PP. 405-411

Keywords: Diagonals-Parameter Symmetry, Linear Diagonals-Parameter Symmetry, Orthogonality, Symmetry

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the analysis of square contingency tables with same row and column ordinal classifications, the present paper gives the decomposition of the generalized linear diagonals-parameter symmetry model using the diagonals-parameter symmetry model. Moreover, it gives the decomposition of the symmetry model using above the proposed decomposition.

References

[1]  Goodman, L.A. (1979) Multiplicative Models for Square Contingency Tables with Ordered Categories. Biometrika, 66, 413-418.
http://dx.doi.org/10.1093/biomet/66.3.413
[2]  Bowker, A.H. (1948) A Test for Symmetry in Contingency Tables. Journal of the American Statistical Association, 43, 572-574.
http://dx.doi.org/10.1080/01621459.1948.10483284
[3]  Agresti, A. (1983) A Simple Diagonals-Parameter Symmetry and Quasi-Symmetry Model. Statistics and Probability Letters, 1, 313-316.
http://dx.doi.org/10.1016/0167-7152(83)90051-2
[4]  Tomizawa, S. (1990) Another Linear Diagonals-Parameter Symmetry Model for Square Contingency Tables with Ordered Categories. South African Statistical Journal: Journal of the South African Statistical Association, 24, 117-125.
[5]  Yamamoto, K. and Tomizawa, S. (2012) Statistical Analysis of Case-Control Data of Endometrial Cancer Based on New Asymmetry Models. Journal of Biometrics and Biostatistics, 3, 1-4.
http://dx.doi.org/10.4172/2155-6180.1000147
[6]  Tomizawa, S. (1990) A Decomposition of Linear Diagonals-Parameter Symmetry Model for Square Contingency Tables with Ordered Categories. Biometrical Journal, 32, 761-766.
http://dx.doi.org/10.1002/bimj.4710320619
[7]  Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, AC- 19, 716-723.
http://dx.doi.org/10.1109/TAC.1974.1100705
[8]  Konishi, S. and Kitagawa, G. (2008) Information Criteria and Statistical Modeling. Springer, New York.
http://dx.doi.org/10.1007/978-0-387-71887-3
[9]  Read, C.B. (1977) Partitioning Chi-Square in Contingency Table: A Teaching Approach. Communications in Statistics-Theory and Methods, 6, 553-562.
http://dx.doi.org/10.1080/03610927708827513
[10]  Aitchson, J. (1962) Large-Sample Restricted Parametric Tests. Journal of the Royal Statistical Society, Series B, 24, 234-250.
[11]  Darroch, J.N. and Silvey, S.D. (1963) On Testing More than One Hypothesis. Annals of Mathematical Statistics, 34, 555-567.
http://dx.doi.org/10.1214/aoms/1177704168
[12]  Kurakami, H., Yamamoto, K. and Tomizawa, S. (2011) Generalized Exponential Symmetry Model and Orthogonal Decomposition of Symmetry for Square Tables. The Open Statistics and Probability Journal, 3, 1-6.
http://dx.doi.org/10.2174/1876527001103010001
[13]  Yamamoto, K., Ohama, M. and Tomizawa, S. (2013) Decompositions of Symmetry Using Generalized Linear Diagonals-Parameter Symmetry Model and Orthogonality of Test Statistic for Square Contingency Tables. Open Journal of Statistics, 3, 9-13.
http://dx.doi.org/10.4236/ojs.2013.36A002
[14]  Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975) Discrete Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge.
[15]  Yamamoto, K., Ohama, M. and Tomizawa, S. (2015) Vision Data Analysis Based on New Statistical Models and Decompositions. Annals of Biometrics and Biostatistics, 2, 1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133