全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Some New Results about Trigonometry in Finite Fields

DOI: 10.4236/apm.2016.67035, PP. 493-497

Keywords: Trigonometry, Finite Field, Primitive, Root of Unity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we study about trigonometry in finite field, we know that \"\" , the field with p elements, where p is a prime number if and only if p = 8k + 1 or p = 8k -1. Let F and K be two fields, we say that F is an extension of K, if KF or there exists a monomorphism f:?KF. Recall that \"\", F[x] is the ring of polynomial over F. If \"\" (means that F is an extension of K), an element \"\" is algebraic over K if there exists \"\" such that f(u) = 0 (see [1]-[4]). The algebraic closure of K in F is \"\" , which is the set of all algebraic elements in F over K.

References

[1]  Delbaen, F. and Schachermayer, W. (2006) The Mathematics of Arbitrage. Springer, Berlin.
[2]  Karl, G. (1994) Operator Trigonometry. Linear and Multilinear Algebra, 37, 139-159.
http://dx.doi.org/10.1080/03081089408818318
[3]  Lima, J.B. and Campello de Souza, R.M. (2013) Fractional Cosine and Sine Transforms over Finite Fields. Linear Algebra and Its Applications, 438, 3217-3230.
http://dx.doi.org/10.1016/j.laa.2012.12.021
[4]  Karl, G. (2010) Operator Trigonometry of Multivariate Finance. Journal of Multivariate Analysis, 101, 374-384.
[5]  Lang, S. (1994) Algebra. 2nd Edition, Addison-Wesley Publishing Company.
[6]  Karl, G. (1997) Operator Trigonometry of Iterative Methods. Numerical Linear Algebra with Applications, 4, 333-347.
http://dx.doi.org/10.1002/(SICI)1099-1506(199707/08)4:4<333::AID-NLA113>3.0.CO;2-I
[7]  John, B. (2008) Geometry and Trigonometry. Engineering Mathematics Pocket Book (Fourth Edition), 105-148.
[8]  Carl, S. and Jeff, Z. (2013) College Trigonometry. Lorain County Community College.
[9]  Gauss, C.F. (1965) Disquisitrones Arithmetica. English Translation, Bravncshweig.
[10]  Chowla, S. (1965) The Riemann Hypothesis Hilbert’s Tenth Problem. Gorden and Breach Science Publishers.
[11]  Honghai, L., George, M.C. and Dave, P.B. (2009) Fuzzy Qualitative Trigonometry. International Journal of Approximate Reasoning, 51, 71-88.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133