全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Decomposition of Point-Symmetry Using Ordinal Quasi Point-Symmetry for Ordinal Multi-Way Tables

DOI: 10.4236/ojs.2016.63033, PP. 381-386

Keywords: Decomposition, Multi-Way Table, Ordinal Quasi Point-Symmetry, Point-Symmetry

Full-Text   Cite this paper   Add to My Lib

Abstract:

For multi-way tables with ordered categories, the present paper gives a decomposition of the point-symmetry model into the ordinal quasi point-symmetry and equality of point-symmetric marginal moments. The ordinal quasi point-symmetry model indicates asymmetry for cell probabilities with respect to the center point in the table.

References

[1]  Bhapkar, V.P. and Darroch, J.N. (1990) Marginal Symmetry and Quasi Symmetry of General Order. Journal of Multivariate Analysis, 34, 173-184.
http://dx.doi.org/10.1016/0047-259X(90)90034-F
[2]  Agresti, A. (2013) Categorical Data Analysis. 3rd Edition, Wiley, Hoboken.
[3]  Tahata, K., Yamamoto, H. and Tomizawa, S. (2011) Linear Ordinal Quasi-Symmetry Model and Decomposition of Symmetry for Multi-Way Tables. Mathematical Methods of Statistics, 20, 158-164.
http://dx.doi.org/10.3103/S1066530711020050
[4]  Agresti, A. (2010) Analysis of Ordinal Categorical Data. 2nd Edition, Wiley, Hoboken.
http://dx.doi.org/10.1002/9780470594001
[5]  Caussinus, H. (1965) Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des Sciences de l’Université de Toulouse, 29, 77-182.
http://dx.doi.org/10.5802/afst.519
[6]  Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975) Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge.
[7]  Read, C.B. (1977) Partitioning Chi-Square in Contingency Tables: A Teaching Approach. Communications in Statistics, Theory and Methods, 6, 553-562.
http://dx.doi.org/10.1080/03610927708827513
[8]  Kateri, M. and Papaioannou, T. (1997) Asymmetry Models for Contingency Tables. Journal of the American Statistical Association, 92, 1124-1131.
http://dx.doi.org/10.1080/01621459.1997.10474068
[9]  Tahata, K. and Tomizawa, S. (2014) Symmetry and Asymmetry Models and Decompositions of Models for Contingency Tables. SUT Journal of Mathematics, 50, 131-165.
[10]  Wall, K. and Lienert, G.A. (1976) A Test for Point-Symmetry in J-Dimensional Contingency-Cubes. Biometrical Journal, 18, 259-264.
[11]  Tomizawa, S. (1985) The Decompositions for Point Symmetry Models in Two-Way Contingency Tables. Biometrical Journal, 27, 895-905.
http://dx.doi.org/10.1002/bimj.4710270811
[12]  Tahata, K. and Tomizawa, S. (2008) Orthogonal Decomposition of Point-Symmetry for Multiway Tables. Advances in Statistical Analysis, 92, 255-269.
http://dx.doi.org/10.1007/s10182-008-0070-5
[13]  Tahata, K. and Tomizawa, S. (2015) Ordinal Quasi Point-Symmetry and Decomposition of Point-Symmetry for Cross-Classifications. Journal of Statistics: Advances in Theory and Applications, 14, 181-194.
[14]  Darroch, J.N. and Ratcliff, D. (1972) Generalized Iterative Scaling for Log-Linear Models. Annals of Mathematical Statistics, 43, 1470-1480.
http://dx.doi.org/10.1214/aoms/1177692379

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133