全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dosimetric Performance of A-Si Electronic Portal Imaging Devices

DOI: 10.4236/ijmpcero.2016.52018, PP. 162-175

Keywords: EPID, Portal Dosimetry, Radiotherapy QA

Full-Text   Cite this paper   Add to My Lib

Abstract:

The majority of EPID dosimetry literature discusses response linearity and the so-called image lag and ghosting effects despite the lack of a common definition of these quantities. However, the results of these studies are generally not consistent, and it is often difficult to compare the results from different studies. We present here a detailed study of the acquisition and readout characteristics of a-Si EPID and its dosimetric performance. EPID response was assessed over the range of 1 - 500 MU using different dose rates and integration times. In addition, a computer model was designed to simulate the EPID image formation with different dose, dose rate, and integration time combinations. All aspects of image processing and readout simulation were carried out using custom written MatLab codes. Two distinct signal profiles were observed depending on the delivered dose, dose rate and integration time combination. Total integrated signal (ST) is linear with the delivered dose. For dosimetry, image lag and ghosting effects mainly result in the residual signal (SR) that appears as delayed signal after the end of irradiation. At its maximum, SR is less than 2.5% of ST. The readout technique is such that it is impossible to measure SR accurately. SR is definable only when readout equilibrium occurs. Signal profiles provide a through and reliable description of the EPID response incorporating the dose, dose rate, integration time, and the residual signal. The definition of EPID signals based on this method shall provide an accurate universal EPID dosimetry framework.

References

[1]  Van Elmpt, W., McDermott, L., Nijsten, S., Wendling, M., Lambin, P. and Mijnheer, B. (2008) A Literature Review of Electronic Portal Imaging for Radiotherapy Dosimetry. Radiotherapy and Oncology, 88, 289-309.
http://dx.doi.org/10.1016/j.radonc.2008.07.008
[2]  McDermott, L.N., Louwe, R.J.W., Sonke, J.J., van Herk, M.B. and Mijnheer, B.J. (2004) Dose-Response and Ghosting Effects of an Amorphous Silicon Electronic Portal Imaging Device. Medical Physics, 31, 285-295.
http://dx.doi.org/10.1118/1.1637969
[3]  Nijsten, S.M.J.J.G., van Elmpt, W.J.C., Jacobs, M., Mijnheer, B.J., Dekker, A.L.A.J., Lambin, P., et al. (2007) A Global Calibration Model for a-Si EPIDs Used for Transit Dosimetry. Medical Physics, 34, 3872-3884.
http://dx.doi.org/10.1118/1.2776244
[4]  McCurdy, B.M.C., Luchka, K. and Pistorius, S. (2001) Dosimetric Investigation and Portal Dose Image Prediction Using an Amorphous Silicon Electronic Portal Imaging Device. Medical Physics, 28, 911-924.
http://dx.doi.org/10.1118/1.1374244
[5]  Mail, P.O.B. and Pang, G. (2007) Lag Correction Model and Ghosting Analysis for an Indirect-Conversion Flat-Panel Imager. Journal of Applied Clinical Medical Physics, 11, 10.
[6]  McCurdy, B.M.C. and Greer, P.B. (2009) Dosimetric Properties of an Amorphous-Silicon EPID Used in Continuous Acquisition Mode for Application to Dynamic and Arc IMRT. Medical Physics, 36, 3028-3039.
http://dx.doi.org/10.1118/1.3148822
[7]  Sonke, J.-J., Ploeger, L.S., Brand, B., Smitsmans, M.H.P. and van Herk, M. (2004) Leaf Trajectory Verification during Dynamic Intensity Modulated Radiotherapy Using an Amorphous Silicon Flat Panel Imager. Medical Physics, 31, 389-395.
http://dx.doi.org/10.1118/1.1639125
[8]  McDermott, L.N., Nijsten, S.M.J.J.G., Sonke, J.J., Partridge, M., van Herk, M. and Mijnheer, B.J. (2006) Comparison of Ghosting Effects for Three Commercial a-Si EPIDs. Medical Physics, 33, 2448-2251.
http://dx.doi.org/10.1118/1.2207318
[9]  Fidanzio, A., Cilla, S., Greco, F., Gargiulo, L., Azario, L., Sabatino, D., et al. (2011) Generalized EPID Calibration for in Vivo Transit Dosimetry. Physica Medica, 27, 30-38.
http://dx.doi.org/10.1016/j.ejmp.2010.02.002
[10]  Fidanzio, A., Greco, F., Gargiulo, L., Cilla, S., Sabatino, D., Cappiello, M., et al. (2011) A Generalized Calibration Procedure for in Vivo Transit Dosimetry Using Siemens Electronic Portal Imaging Devices. Medical and Biological Engineering and Computing, 49, 373-383.
http://dx.doi.org/10.1007/s11517-010-0699-6
[11]  Vial, P., Greer, P.B., Oliver, L. and Baldock, C. (2008) Initial Evaluation of a Commercial EPID Modified to a Novel Direct-Detection Configuration for Radiotherapy Dosimetry. Medical Physics, 35, 4362-4374.
http://dx.doi.org/10.1118/1.2975156
[12]  Grzadziel, A., Smolinska, B., Rutkowski, R. and Slosarek, K. (2007) EPID Dosimetry-Configuration and Pre-Treatment IMRT Verification. Reports of Practical Oncology & Radiotherapy, 12, 307-312.
http://dx.doi.org/10.1016/S1507-1367(10)60069-7
[13]  Slosarek, K., Szlag, M., Bekman, B. and Grzadziel, A. (2010) EPID in Vivo Dosimetry in RapidArc Technique. Reports of Practical Oncology & Radiotherapy, 15, 8-14.
http://dx.doi.org/10.1016/j.rpor.2010.01.003
[14]  Awusi, K., et al. (2008) Assessment of Dosimetrical Performance in 11 Varian a-Si500 Electronic Portal Imaging Devices. Physics in Medicine and Biology, 53, 6893.
http://dx.doi.org/10.1088/0031-9155/53/23/016
[15]  Gustafsson, H, Vial, P., Kuncic, Z., Baldock, C., Greer, P.B. and Denham, J.W. (2011) Direct Dose to Water Dosimetry for Pretreatment IMRT Verification Using a Modified EPID. Medical Physics, 38, 6257-6264.
http://dx.doi.org/10.1118/1.3656946
[16]  Juste, B., Miró, R., Diez, S., Campayo, J.M. and Verdú, G. (2009) Monte Carlo Simulation of the iView GT Portal Imager Dosimetry. Applied Radiation and Isotopes, 68, 922-925.
http://dx.doi.org/10.1016/j.apradiso.2009.10.051
[17]  Van Esch, A., Depuydt, T. and Huyskens, D.P. (2004) The Use of an aSi-Based EPID for Routine Absolute Dosimetric Pre-Treatment Verification of Dynamic IMRT Fields. Radiotherapy and Oncology, 71, 223-234.
http://dx.doi.org/10.1016/j.radonc.2004.02.018
[18]  Winkler, P., Hefner, A. and Georg, D. (2005) Dose-Response Characteristics of an Amorphous Silicon EPID. Medical Physics, 32, 3095-3105.
http://dx.doi.org/10.1118/1.2040711
[19]  Winkler, P. and Georg, D. (2006) An Intercomparison of 11 Amorphous Silicon EPIDs of the Same Type: Implications for Portal Dosimetry. Physics in Medicine and Biology, 51, 4189.
http://dx.doi.org/10.1088/0031-9155/51/17/005
[20]  Talamonti, C., Casati, M. and Bucciolini, M. (2006) Pretreatment Verification of IMRT Absolute Dose Distributions Using a Commercial a-Si EPID. Medical Physics, 33, 4367-4378.
http://dx.doi.org/10.1118/1.2357834
[21]  Wendling, M., Louwe, R.J.W., McDermott, L.N., Sonke, J.-J., van Herk, M. and Mijnheer, B.J. (2006) Accurate Two-Dimensional IMRT Verification Using a Back-Projection EPID Dosimetry Method. Medical Physics, 33, 259-273.
http://dx.doi.org/10.1118/1.2147744
[22]  Wendling, M., McDermott, L.N., Mans, A., Sonke, J.-J., van Herk, M. and Mijnheer, B.J. (2009) A Simple Backprojection Algorithm for 3D in Vivo EPID Dosimetry of IMRT Treatments. Medical Physics, 36, 3310-3321.
http://dx.doi.org/10.1118/1.3148482
[23]  Liebich, J., Licher, J., Scherf, C., Kara, E., Koch, N., Rödel, C., et al. (2011) Simple Proposal for Dosimetry with an Elekta iViewGTTM Electronic Portal Imaging Device (EPID) Using Commercial Software Modules. Strahlentherapie und Onkologie, 187, 316-321.
http://dx.doi.org/10.1007/s00066-011-2176-z
[24]  Podesta, M., Nijsten, S.M.J.J.G., Snaith, J., Orlandini, M., Lustberg, T., Emans, D., et al. (2012) Measured vs Simulated Portal Images for Low MU Fields on Three Accelerator Types: Possible Consequences for 2D Portal Dosimetry. Medical Physics, 39, 7470-7479.
http://dx.doi.org/10.1118/1.4761950
[25]  Alshanqity, M., Duane, S. and Nisbet, A. (2012) A Simple Approach for EPID Dosimetric Calibration to Overcome the Effect of Image-Lag and Ghosting. Applied Radiation and Isotopes, 70, 1154-1157.
http://dx.doi.org/10.1016/j.apradiso.2012.02.003
[26]  Tyner, E., McClean, B., McCavana, P. and Wetterstedt, S. (2009) Experimental Investigation of the Response of an a-Si EPID to an Unflattened Photon Beam from an Elekta Precise Linear Accelerator. Medical Physics, 36, 1318-1329.
http://dx.doi.org/10.1118/1.3089424
[27]  Partridge, M., Hesse, B.M. and Müller, L. (2002) A Performance Comparison of Direct- and Indirect-Detection Flat-Panel Imagers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 484, 351-363.
http://dx.doi.org/10.1016/S0168-9002(01)02023-X
[28]  Zhao, W., De Crescenzo, G. and Rowlands, J.A. (2002) Investigation of Lag and Ghosting in Amorphous Selenium Flat-Panel X-Ray Detectors. SPIE Proceedings, 4682, 9-20.
http://dx.doi.org/10.1117/12.465557

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133