Although computing the Khovanov homology of links is common in
literature, no general formulae have been given for all of them. We give the
graded Euler characteristic and the Khovanov homology of the 2-strand braid
link?,, and the 3-strand braid .
References
[1]
Khovanov, M. (2000) A Categorification of the Jones Polynomial. Duke Mathematical Journal, 3, 359-426.
[2]
Bar-Natan, D. (2002) On Khovanov’s Categorification of the Jones Polynomial. Algebraic and Geometric Topology, 2, 337-370. http://dx.doi.org/10.2140/agt.2002.2.337
[3]
Reidemeister, K. (1926) Elementare begrundung der knotentheorie. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 5, 24-32.
[4]
Manturov, V. (2004) Knot Theory. Chapman and Hall/CRC, Boca Raton.
[5]
Artin, E. (1947) Theory of Braids. Annals of Mathematics, 48,101-126. http://dx.doi.org/10.2307/1969218
[6]
Alexander, J. (1923) Topological Invariants of Knots and Links. Transactions of the American Mathematical Society, 20, 275-306.
[7]
Jones, V. (1985) A Polynomial Invariant for Knots via Von Neumann Algebras. Bulletin of the American Mathematical Society, 12, 103-111. http://dx.doi.org/10.1090/S0273-0979-1985-15304-2
[8]
Kauffman, L.H. (1987) State Models and the Jones Polynomial. Topology, 26, 395-407. http://dx.doi.org/10.1016/0040-9383(87)90009-7
[9]
Reidemeister, K. (1948) Knot Theory. Chelsea Publ. and Co., New York.