全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On the Khovanov Homology of 2- and 3-Strand Braid Links

DOI: 10.4236/apm.2016.66034, PP. 481-491

Keywords: Khovanov Homology, Khovanov Bracket, Graded Euler Characteristic, Braid Link, Jones Polynomial

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although computing the Khovanov homology of links is common in literature, no general formulae have been given for all of them. We give the graded Euler characteristic and the Khovanov homology of the 2-strand braid link\"\",\"\", and the 3-strand braid \"\".

References

[1]  Khovanov, M. (2000) A Categorification of the Jones Polynomial. Duke Mathematical Journal, 3, 359-426.
[2]  Bar-Natan, D. (2002) On Khovanov’s Categorification of the Jones Polynomial. Algebraic and Geometric Topology, 2, 337-370.
http://dx.doi.org/10.2140/agt.2002.2.337
[3]  Reidemeister, K. (1926) Elementare begrundung der knotentheorie. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 5, 24-32.
[4]  Manturov, V. (2004) Knot Theory. Chapman and Hall/CRC, Boca Raton.
[5]  Artin, E. (1947) Theory of Braids. Annals of Mathematics, 48,101-126.
http://dx.doi.org/10.2307/1969218
[6]  Alexander, J. (1923) Topological Invariants of Knots and Links. Transactions of the American Mathematical Society, 20, 275-306.
[7]  Jones, V. (1985) A Polynomial Invariant for Knots via Von Neumann Algebras. Bulletin of the American Mathematical Society, 12, 103-111.
http://dx.doi.org/10.1090/S0273-0979-1985-15304-2
[8]  Kauffman, L.H. (1987) State Models and the Jones Polynomial. Topology, 26, 395-407.
http://dx.doi.org/10.1016/0040-9383(87)90009-7
[9]  Reidemeister, K. (1948) Knot Theory. Chelsea Publ. and Co., New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133