The paper presents a very simple
and straight forward yet pure mathematical derivation of the structure of
actual spacetime from quantum set theory. This is achieved by utilizing
elements of the topological theory of cobordism and the Menger-Urysohn
dimensional theory in conjunction with von Neumann-Connes dimensional function
of Klein-Penrose modular holographic boundary of the E8E8 exceptional Lie group
bulk of our universe. The final result is a lucid sharp mental picture, namely
that the quantum wave is an empty set representing the surface, i.e.
boundary of the zero set quantum particle and in turn quantum spacetime is
simply the boundary or the surface of the quantum wave empty set. The essential
difference of the quantum wave and quantum spacetime is that the wave is a
simple empty set while spacetime is a multi-fractal type of infinitely many
empty sets with
increasing degrees of emptiness.
References
[1]
Ferdinand Kürnberger: Encyclopaedia Britannica. http://www.britannica.com/biography/Ferdinand-Kurnberger
[2]
Wittgenstein, L. (1961) Tractatus Logico-Philosphicus. Routledge and Kegan Paul, London.
[3]
El Naschie, M.S. (2015) An Exact Mathematical Picture of Quantum Spacetime. Advances in Pure Mathematics, 5, 560-570. http://dx.doi.org/10.4236/apm.2015.59052
[4]
El Naschie, M.S. (2015) If Quantum “Wave” of the Universe then Quantum “Particle” of the Universe: A Resolution of the Dark Energy Question and the Black Hole Information Paradox. International Journal of Astronomy & Astrophysics, 5, 243-247. http://dx.doi.org/10.4236/ijaa.2015.54027
[5]
El Naschie, M.S. (2015) On a Non-Perturbative Quantum Relativity Theory Leading to a Casimir-Dark Energy Nanotech Reactor Proposal. Open Journal of Applied Science, 5, 313-324. http://dx.doi.org/10.4236/ojapps.2015.57032
[6]
El Naschie, M.S. (2015) From Fusion Algebra to Cold Fusion or from Pure Reason to Pragmatism. Open Journal of Philosophy, 5, 319-326. http://dx.doi.org/10.4236/ojpp.2015.56040
[7]
El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4, 591-596. http://dx.doi.org/10.4236/jmp.2013.45084
[8]
El Naschie, M.S. (2016) From Witten’s 462 Supercharges of 5-D Branes in Eleven Dimensions to the 95.5 Percent Cosmic Dark Energy Density behind the Accelerated Expansion of the Universe. Journal of Quantum Information Science, 6, 57-61. http://dx.doi.org/10.4236/jqis.2016.62007
[9]
El Naschie, M.S. (2016) Negative Norms in Quantized Strings as Dark Energy Density of the Cosmos. World Journal of Condensed Matter Physics, 6, 63-67. http://dx.doi.org/10.4236/wjcmp.2016.62009
[10]
El Naschie, M.S. (2016) On a Quantum Gravity Fractal Spacetime Equation: QRG≃HD + FG and Its Application to Dark Energy—Accelerated Cosmic Expansion. Journal of Modern Physics, 7, 729-736. http://dx.doi.org/10.4236/jmp.2016.78069
[11]
El Naschie, M.S. (2016) Einstein-Rosen Bridge (ER), Einstein-Podolski-Rosen Experiment (EPR) and Zero Measure Rindler KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent. Journal of Quantum Information Science, 6, 1-9. http://dx.doi.org/10.4236/jqis.2016.61001
[12]
El Naschie, M.S. (2016) Einstein’s Dark Energy via Similarity Equivalence, ‘tHooft Dimensional Regularization and Lie Symmetry Groups. International Journal of Astronomy & Astrophysics, 6, 56-81. http://dx.doi.org/10.4236/ijaa.2016.61005
[13]
El Naschie, M.S. (2016) Quantum Dark Energy from the Hyperbolic Transfinite Cantorian Geometry of the Cosmos. Natural Science, 8, 152-159. http://dx.doi.org/10.4236/ns.2016.83018
[14]
El Naschie, M.S. (2015) Hubble Scale Dark Energy Meets Nano Scale Casimir Energy and the Rational of Their T-Duality and Mirror Symmetry Equivalence. World Journal of Nano Science and Engineering, 5, 57-67. http://dx.doi.org/10.4236/wjnse.2015.53008
[15]
El Naschie, M.S. (2014) Cosmic Dark Energy from ‘thooft’s Dimesnionl Regularization and Witten’s Topological Quantum Field Pure Gravity. Journal of Quantum Information Science, 4, 83-91. http://dx.doi.org/10.4236/jqis.2014.42008
[16]
El Naschie, M.S. (2015) Application of Dvoretzky’s Theorem of Measure Concentration in Physics and Cosmology. Open Journal of Microphysics, 5, 11-15. http://dx.doi.org/10.4236/ojm.2015.52002
[17]
El Naschie, M.S. (2015) A Resolution of the Black Hole Information Paradox via Transfinite Set Theory. World Journal of Condensed Matter Physics, 5, 249-260. http://dx.doi.org/10.4236/wjcmp.2015.54026
[18]
El Naschie, M.S. (2015) The Counterintuitive Increase of Information due to Extra Spacetime Dimensions of a Black Hole and Dvoretzky’s Theorem. Natural Science, 7, 483-487. http://dx.doi.org/10.4236/ns.2015.710049
[19]
El Naschie, M.S. (2014) Entanglement of E8E8 Exceptional Lie Symmetry Group Dark Energy, Einstein’s Maximal Total Energy and the Hartle-Hawking No Boundary Proposal as the Explanation for Dark Energy. World Journal of Condensed Matter Physics, 4, 74-77. http://dx.doi.org/10.4236/wjcmp.2014.42011
[20]
Marek-Crnjac, L. (2015) On El Naschie’s Fractal-Cantorian Space-Time and Dark Energy—A Tutorial Review. Natural Science, 7, 581-598. http://dx.doi.org/10.4236/ns.2015.713058
[21]
El Naschie, M.S. (2013) The Quantum Gravity Immirzi Parameter—A General Physical and Topological Interpretation. Gravitation and Cosmology, 19, 151-155. http://dx.doi.org/10.1134/S0202289313030031
[22]
El Naschie, M.S. (2016) Cosserat-Cartan and de Sitter-Witten Spacetime Setting for Dark Energy. Quantum Matter, 5, 1-4. http://dx.doi.org/10.1166/qm.2016.1247
[23]
El Naschie, M.S. (2015) The Self Referential Pointless Universe Geometry as the Key to the Resolution of the Black Hole Information Paradox. International Journal of Innovation in Science and Mathematics, 3, 254-265.
[24]
El Naschie, M.S. (2016) On a Fractal Version of Witten’s M-Theory. Journal of Astronomy & Astrophysics, 6, 135-144. http://dx.doi.org/10.4236/ijaa.2016.62011
[25]
Connes, A. (1994) Noncommutative Geometry. Academic Press, San Diego, See in Particular 85-93.
[26]
Marek-Crnjac, L. (2011) The Hausdorff Dimension of the Penrose Universe. Physics Research International, 2011, Article ID: 874302. http://dx.doi.org/10.1155/2011/874302
[27]
Connes, A., Lichnerowicz, A. and Schützenberger, M.P. (2001) Triangle of Thought. American Mathematical Society, Providence.
[28]
Changeux, J.P. and Connes, A. (1995) Conversations on Mind, Matter and Mathematics. Princeton University Press, Princeton.
[29]
Marcolli, M. (2010) Feynman Motives. World Scientific, Singapore.
[30]
Connes, A. and Marcolli, M. (2008) Quantum Fields and Motives. American Mathematical Society, USA.
[31]
Scheck, F., Upmeier, H. and Werner, W. (Editors) (2002) Noncommutative Geometry and the Standard Model of Elementary Particle Physics. Springer, Berlin. http://dx.doi.org/10.1007/3-540-46082-9
[32]
Landi, G. (1997) An Introduction to Noncommutative Spaces and Their Geometrics. Springer, Berlin, See in Particular 73-77.
[33]
El Naschie, M.S. (1998) Penrose Universe and Cantorian Spacetime as a Model for Noncommutative Quantum Geometry. Chaos, Solitons & Fractals, 9, 931-933. http://dx.doi.org/10.1016/S0960-0779(98)00077-0
[34]
El Naschie, M.S. (1998) Von Neumann Geometry and E-Infinity Quantum Spacetime. Chaos, Solitons & Fractals, 9, 2023-2030.
[35]
Goldfain, E. (2004) On a Possible Evidence for Cantorian Space-Time in Cosmic Ray Astrophysics. Chaos, Solitons & Fractals, 20, 427-435. http://dx.doi.org/10.1016/j.chaos.2003.10.012
[36]
He, J.-H., Zhong, T., Xu, L., Marek-Crnjac, L., Nada, S.I. and Helal, M.A. (2011) The Importance of the Empty Set and Noncommutative Geometry in Underpinning the Foundations of Quantum Physics. Nonlinear Science Letters B, 1, 14-23.
[37]
Marek-Crnjac, L. (2011) The Physics of Empty Sets and the Quantum. Nonlinear Science Letters B, 1, 4-5.
[38]
Mandelbrot, B. (1990) Negative Fractal Dimensions and Multifractals. Physica A: Statistical Mechanics and Its Applications, 163, 306-315. http://dx.doi.org/10.1016/0378-4371(90)90339-T
[39]
El Naschie, M.S. (1996) On Numbers, Probability and Dimensions. Chaos, Solitons & Fractals, 7, 955-959. http://dx.doi.org/10.1016/0960-0779(96)00036-7
[40]
El Naschie, M.S. (1994) On Certain “Empty” Cantor Sets and Their Dimensions. Chaos, Solitons & Fractals, 4, 293-296. http://dx.doi.org/10.1016/0960-0779(94)90152-X
[41]
El Naschie, M.S. (1993) Statistical Mechanics of Multi-Dimensional Cantor Sets, GÖdel Theorem and Quantum Space-time. Journal of the Franklin Institute, 330, 199-211. http://dx.doi.org/10.1016/0016-0032(93)90030-X
[42]
El Naschie, M.S. (2006) New Hot Paper Comments. ESI Special Topics, Thomson Essential Science Indicators, September.
[43]
El Naschie, M.S. (2004) A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236. http://dx.doi.org/10.1016/S0960-0779(03)00278-9
[44]
El Naschie, M.S. (1998) On the Uncertainty of Cantorian Geometry and the Two-Slit Experiment. Chaos, Solitons & Fractals, 19, 517-529. http://dx.doi.org/10.1016/S0960-0779(97)00150-1
[45]
El Naschie, M.S. (2005) On a Fuzzy Kähler-Like Manifold Which Is Consistent with the Two Slit Experiment. International Journal of Nonlinear Sciences and Numerical Simulation, 6, 95-98. http://dx.doi.org/10.1515/ijnsns.2005.6.2.95
[46]
Finkelstein, D.R. (1996) Quantum Relativity. A Synthesis of the Ideas of Einstein and Heisenberg. Springer, Berlin, Germany.
[47]
El Naschie, M.S. (2006) Elementary Prerequisites for E-Infinity (Recommended Background Readings in Nonlinear Dynamics, Geometry and Topology). Chaos, Solitons & Fractals, 30, 579-605. http://dx.doi.org/10.1016/j.chaos.2006.03.030
[48]
El Naschie, M.S. (2004) The Concepts of E-Infinity: An Elntary Intrction to the Cantorian-Fractal Theory of Quantum Physics. Chaos, Solitons & Fractals, 22, 495-511. http://dx.doi.org/10.1016/j.chaos.2004.02.028
[49]
El Naschie, M.S. (2007) A Review of Application and Results of E-Infinity. International Journal of Nonlinear Science & Numerical Simulation, 8, 11-20. http://dx.doi.org/10.1515/IJNSNS.2007.8.1.11
[50]
El Naschie, M.S. (2002) On a Class of General Theories for Higher Energy Particle Physics. Chaos, Solitons & Fractals, 14, 649-668. http://dx.doi.org/10.1016/S0960-0779(02)00033-4
[51]
El Naschie, M.S. (1998) Superstrings, Knots and Noncommutative Geometry in E-Infinity Space. International Journal of Theoretical Physics, 37, 2935-2951. http://dx.doi.org/10.1023/A:1026679628582
[52]
El Naschie, M.S. (1991) Quantum Mechanics and the Possibility of a Cantorian Spacetime. Chaos, Solitons & Fractals, 1, 485-487. http://dx.doi.org/10.1016/0960-0779(91)90019-6
[53]
El Naschie, M.S. (1994) Is Quantum Space a Random Cantor Set with a Golden Mean Dimension at the Core? Chaos, Solitons & Fractals, 4, 177-179. http://dx.doi.org/10.1016/0960-0779(94)90141-4
[54]
El Naschie, M.S. (2005) A Guide to the Mathematics of E-Infinity Cantorian Spacetime Theory. Chaos, Solitons & Fractals, 25, 955-964. http://dx.doi.org/10.1016/j.chaos.2004.12.033
[55]
El Naschie, M.S. (1996) Time Symmetry Breaking, Duality and Cantorian Spacetime. Chaos, Solitons & Fractals, 7, 499-518. http://dx.doi.org/10.1016/0960-0779(96)00007-0
[56]
El Naschie, M.S. (2004) Quantum Gravity, Clifford Algebra, Fuzzy Set Theory and the Fundamental Constants of Nature. Chaos, Solitons & Fractals, 20, 297-330. http://dx.doi.org/10.1016/j.chaos.2003.09.029
[57]
El Naschie, M.S. (2009) The Theory of Cantorian Spacetime and High Energy Particle Physics (An Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646. http://dx.doi.org/10.1016/j.chaos.2008.09.059
[58]
El Naschie, M.S. (2005) From Experimental Quantum Optics to Quantum Gravity via a Fuzzy Kähler Manifold. Chaos, Solitons & Fractals, 25, 969-977. http://dx.doi.org/10.1016/j.chaos.2005.02.028
[59]
El Naschie, M.S. (2006) Topics in the Mathematical Physics of E-Infinity Theory. Chaos, Solitons & Fractals, 30, 656-663. http://dx.doi.org/10.1016/j.chaos.2006.04.043
[60]
El Naschie, M.S. (2000) On the Unification of Heterotic Strings, M Theory and E (∞) Theory. Chaos, Solitons & Fractals, 11, 2397-2408. http://dx.doi.org/10.1016/S0960-0779(00)00108-9
[61]
El Naschie, M.S. (2006) Elementary Number Theory in Superstring Loop Quantum Mechanics, Twistors and E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 27, 297-330. http://dx.doi.org/10.1016/j.chaos.2005.04.116
[62]
El Naschie, M.S. (2009) Wild Topology, Hyperbolic Geometry and Fusion Algebra of High Energy Particle Physics. Chaos, Solitons & Fractals, 13, 1935-1945. http://dx.doi.org/10.1016/S0960-0779(01)00242-9
[63]
El Naschie, M.S. (2004) Quantum Gravity from Descriptive Set Theory. Chaos, Solitons & Fractals, 19, 1339-1344. http://dx.doi.org/10.1016/j.chaos.2003.08.009
[64]
El Naschie, M.S. (1995) A Note on Quantum Mechanics, Diffusional Interference and Information. Chaos, Solitons & Fractals, 5, 881-884. http://dx.doi.org/10.1016/0960-0779(95)00040-B
[65]
El Naschie, M.S. (1993) On Dimensions Of Cantor Set Related Systems. Chaos, Solitons & Fractals, 3, 675-685. http://dx.doi.org/10.1016/0960-0779(93)90053-4
[66]
El Naschie, M.S. (1997) Fractal Gravity and Symmetry Breaking in a Hierarchical Cantorian Space. Chaos, Solitons & Fractals, 8, 1865-1872. http://dx.doi.org/10.1016/S0960-0779(97)00039-8
[67]
El Naschie, M.S. (1997) Remarks on Super Strings, Fractal Gravity, Nagasawa’s Diffusion and Cantorian Spacetime. Chaos, Solitons & Fractals, 8, 1873-1886. http://dx.doi.org/10.1016/S0960-0779(97)00124-0
[68]
El Naschie, M.S. (2003) Modular Groups in Cantorian E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 16, 353-366. http://dx.doi.org/10.1016/S0960-0779(02)00440-X
[69]
El Naschie, M.S. (1995) Banach-Tarski Theorem and Cantorian Micro Spacetime. Chaos, Solitons & Fractals, 5, 1503-1508. http://dx.doi.org/10.1016/0960-0779(95)00052-6
[70]
El Naschie, M.S. (2006) Hilbert Space, the Number of Higgs Particles and the Quantum Two-Slip Experiment. Chaos, Solitons & Fractals, 28, 9-13. http://dx.doi.org/10.1016/j.chaos.2005.05.010
[71]
El Naschie, M.S. (2006) The Idealized Quantum Two-Slit Gedanken Experiment Revisited—Criticism and Reinterpretation. Chaos, Solitons & Fractals, 27, 843-849. http://dx.doi.org/10.1016/j.chaos.2005.06.002
[72]
El Naschie, M.S. (2003) The VAK of Vacuum Fluctuation, Spontaneous Self Organization and Complexity Theory Interpretation of High Energy Particle Physics and the Mass Spectrum. Chaos, Solitons & Fractals, 18, 579-605.
[73]
El Naschie, M.S. (2005) Non-Euclidean Spacetime Structure and the Two-Slit Experiment. Chaos, Solitons & Fractals, 26, 1-6. http://dx.doi.org/10.1016/j.chaos.2005.02.031
[74]
El Naschie, M.S. (2006) Hilbert, Fock and Cantorian Spaces in the Quantum Two-Slit Gedanken Experiment. Chaos, Solitons & Fractals, 27, 39-42. http://dx.doi.org/10.1016/j.chaos.2005.04.094
[75]
El Naschie, M.S. (2006) On an Eleven Dimensional E-Infinity Fractal Spacetime Theory. International Journal of Nonlinear Sciences & Numerical Simulation, 7, 407-409.
[76]
El Naschie, M.S. (2006) Fuzzy Dodecahedron Topology and E-Infinity Spacetime as a Model for Quantum Physics. Chaos, Solitons & Fractals, 30, 1025-1033. http://dx.doi.org/10.1016/j.chaos.2006.05.088
[77]
El Naschie, M.S. (2006) On Two New Fuzzy Kähler Manifolds, Klein Modular Space and ’t Hooft Holographic Principles. Chaos, Solitons & Fractals, 29, 876-881. http://dx.doi.org/10.1016/j.chaos.2005.12.027
[78]
El Naschie, M.S. (2003) Complex Vacuum Fluctuation as a Chaotic “Limit” Set of Any Kleinian Group Transformation and the Mass Spectrum of High Energy Particle Physics via Spontaneous Self Organization. Chaos, Solitons & Fractals, 17, 631-638. http://dx.doi.org/10.1016/S0960-0779(02)00630-6
[79]
El Naschie, M.S. (2006) Superstrings, Entropy and the Elementary Particles Content of the Standard Model. Chaos, Solitons & Fractals, 29, 48-54. http://dx.doi.org/10.1016/j.chaos.2005.11.032
[80]
El Naschie, M.S. (1999) Nuclear Spacetime Theories, Superstrings, Monster Group and Applications, Chaos, Solitons & Fractals, 10, 567-580. http://dx.doi.org/10.1016/S0960-0779(98)00313-0
[81]
El Naschie, M.S. (2011) Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry. Journal of Quantum Information Science, 1, 50-53. http://dx.doi.org/10.4236/jqis.2011.12007
[82]
El Naschie, M.S. (2004) The Symplictic Vacuum, Exotic Quasi Particles and Gravitational Instanton. Chaos, Solitons & Fractals, 22, 1-11. http://dx.doi.org/10.1016/j.chaos.2004.01.015
[83]
El Naschie, M.S. (1998) COBE Satellite Measurement, Hyper Spheres, Superstrings and the Dimension of Spacetime. Chaos, Solitons & Fractals, 9, 1445-1471. http://dx.doi.org/10.1016/S0960-0779(98)00120-9
[84]
El Naschie, M.S. (2006) Advanced Prerequisites for E-Infinity Theory. Chaos, Solitons & Fractals, 3, 636-641. http://dx.doi.org/10.1016/j.chaos.2006.04.044
[85]
El Naschie, M.S. (2015) The Casimir Topological Effect and a Proposal for a Casimir-Dark Energy Nano Reactor. World Journal of Nano Science & Engineering, 5, 26-33. http://dx.doi.org/10.4236/wjnse.2015.51004
[86]
El Naschie, M.S. (2015) Kerr Black Hole Geometry Leading to Dark Matter and Dark Energy via E-Infinity Theory and the Possibility of Nano Spacetime Singularity Reactor. Natural Science, 7, 210-225. http://dx.doi.org/10.4236/ns.2015.74024
[87]
El Naschie, M.S. (2014) Why E Is Not Equal mc2. Journal of Modern Physics, 5, 743-750. http://dx.doi.org/10.4236/jmp.2014.59084
[88]
El Naschie, M.S. (2014) On a New Elementary Particle from the Disintegration of the Symplectic ’t Hooft-Veltman-Wilson Fractal Spacetime. World Journal of Nuclear Science and Technology, 4, 216-221. http://dx.doi.org/10.4236/wjnst.2014.44027
[89]
El Naschie, M.S. (2014) From E = mc2 to E = mc2/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entangled Origin. Journal of Quantum Information Science, 4, 284-291. http://dx.doi.org/10.4236/jqis.2014.44023