Here we suggest an algorithm for calculation of the process parameters and design of a vertical cooler with inclined, gas-permeable blades and with a vibrating, suspended layer of granules on them (Vibrating Fluidized Bed—VFB). The algorithm is based on the use of the equations of heat and material balance, taking into account the influx of moisture into the layer with cold air and dust—as a carryover. Mode entrainment of dust particles and moisture from the VFB is described by using empirical formulas and Π-theorem. To calculate the cooling time of granules a model of the dynamics of a variable mass VFB was built, which linked the geometrical and physical process parameters to a single dependency. An example showed that mass flow of granules of 248 kg/h and a volume flow of air of 646 m3/h with temperature of 30℃ to cool the zeolite granules from 110℃ to 42℃ for 49 s required a vertical apparatus of rectangular shape with four chambers and with volume of 0.2 m3. A comparative analysis of technological parameters of the projected cooler with the parameters of typical industrial apparatuses showed that for all indicators: the cooling time of granules, the flow rate of gas (air) and the heat flow, a 4-chambered, vertical apparatus of rectangular shape with VFB was the most effective.
References
[1]
Directory of Chemist 21 (Russian). http://www.chem21.info/info/1120206
[2]
Grishaev, I.G. and Gordin, A.A. (2010) Intensification of Cooling of Phosphatic Salts and Fertilizers. Chemical and Petroleum Engineering, 46, 322-329. http://dx.doi.org/10.1007/s10556-010-9337-2
[3]
Great Encyclopedia of Oil and Gas. Cooling of Granules (Russian). http://www.ngpedia.ru/id236461p1.html
[4]
Muroyama, K. and Fan, L.-S. (1985) Fundamentals of Gas-Liquid-Solid Fluidization. AIChE Journal, 31, 1-34.
http://dx.doi.org/10.1002/aic.690310102
[5]
Protodyakonov, I.O. and Chesnokov, Yu.G. (1982) Gidromekhanikapsevdoozhizhennogosloya (Hydromechanics for Fluidized Bed). Chemistry, Leningrad, 208-254 (Russian).
[6]
Tacidelli, A.R., Pereira Neto, A.T., Brito, R.P., Brandao de Araujo, A.C., Sales Vasconcelos, L.G. and Nicacio Alves, J.J. (2012) Modeling and Simulation of Industrial PVC Drying in Fluidized Beds with Internal Heat Source. Chemical Engineering & Technology, 35, 2107-2119. http://dx.doi.org/10.1002/ceat.201100713
[7]
Perry, R.H., Green, D.W. and O’Maloney, J. (1977) Perrys Chemical Engineering Handbook. 7th Edition, McGraw-Hill, New York, 5-72-5-74.
[8]
Katz, V.Ya. and Mazor, G. (2010) Drying of Granules in Vibrating Suspended Bed: Engineering Simulation. Russian Journal of Applied Chemistry, 83, 1707-1716. http://dx.doi.org/10.1134/S1070427210090399
[9]
Todes, O.M. and Pyzhikov, V.S. (1975) Moisture Evaporation in a Fluidized Bed of Inert Particles. Translated from Inzhenerno-Fizicheskiizhurnal. Journal of Engineering Physics, 28, 10-14. http://dx.doi.org/10.1007/bf00861647
Kogan, V.B. (1977) Teoreticheskiyeosnovytipovykhprotsessovkhimicheskoytekhnologii (Theoretical Foundations of Typical Processes of Chemical Technology). Chemistry, Leningrad, 349-354 (Russian).
Streeter, V.L., Wylie, E.B. and Bedford, K.W. (1988) Fluid Mechanics, 9th Edition, McGraw-Hill, New York, 228-236.
[14]
Romankov, P.G. and Kurochkina, M.I. (1985) Raschotnyyediagrammy I nomogrammypokursu “Protsessyiapparatykhimicheskoypromyshlennosty” (Calculation Charts and Nomograms for the Course “Processes and Devices of Chemical Industry”). Chemistry, Leningrad, 32-40 (Russian).
[15]
Zakirullin, R.S. (2005) Approximation of Dependence of Air Specific Humidity from Temperatures of Dry and Wet Thermometers at Recirculating Convection Drying. Bulletin of the Orenburg State University, 10 130-135 (Russian).
[16]
Kryukov, G.V, Tereshchenkov, V.V., Lykov, M.V. and Gabeskiriya, O.V. (1976) Calculations for Single-Stage Fluidized Bed Equipment for Cooling Mineral Fertilizers. Translated from khimicheskoeineftyanoemashinostroenie. Chemical and Petroleum Engineering, 2, 141-144. http://dx.doi.org/10.1007/bf01144230