A new all optical flip-flop based on a 3-sections nonlinear semiconductor
DFB laser structure is proposed and simulated. The operation of the device does
not require a holding beam. Electrical current injection into an active layer
provides optical gain to the laser mode. The wave-guiding layer consists of a
linear grating section centered between 2 detuned nonlinear grating sections.
The average refractive index in the nonlinear sections is slightly higher than
the refractive index of the middle section. A negative nonlinear refractive
index coefficient exists along the nonlinear sections. In the “OFF” state, the
DFB structure does not provide enough optical feedback to lase due to the
detuned sections. At high light intensity in structure, “ON” state, detuning
decreases and the DFB structure allows for a laser mode that sustains the
decrease in detuning to exist. The nonlinearity is provided by direct photon
absorption at the Urbach tail. Numerical simulations using GPGPU computing show
nanoseconds transition times between “OFF” and “ON” states.
References
[1]
Dorren, H.J.S., Hill, M.T., Liu, Y., Calabretta, N., Srivatsa, A., Huijskens, F.M., de Waardt, H. and Khoe, G.D. (2003) Optical Packet Switching and Buffering by Using All-Optical Signal Processing Methods. Journal of Lightwave Technology, 21, 2-12. http://dx.doi.org/10.1109/JLT.2002.803062
[2]
Liu, L., Kumar, R., Huybrechts, K., Spuesens, T., Roelkens, G., Geluk, E.J., de Vries, T., Regreny, P., Thourhout, D.V., Baets, R. and Morthier, G. (2010) An Ultra-Small, Low-Power, All-Optical Flip-Flop Memory on a Silicon Chip. Nature Photonics, 4, 182-187.
[3]
Hill, M.Y., Dorren, H.J.S., de Vries, T., Leijtens, X.J.M., den Besten, J.H., Smalbrugge, B., Oei, Y.S., Binsma, H., Khoe, G.D. and Smit, M.K. (2004) A Fast Low-Power Optical Memory Based on Coupled Micro-Ring Lasers. Nature, 432, 206-208. http://dx.doi.org/10.1038/nature03045
[4]
Huybrechts, K., Morthier, G. and Baet, R. (2008) Fast All-Optical Flip-Flop Based on a Single Distributed Feedback Laser Diode. Optics Express, 16, 11405-11410. http://dx.doi.org/10.1364/OE.16.011405
[5]
Takenaka, M., Raburn, M. and Nakano, Y. (2005) All-Optical Flip-Flop Multimode Interference Bistable Laser Diode. IEEE Photonics Technology Letters, 17, 968-970. http://dx.doi.org/10.1109/LPT.2005.844322
[6]
Jiang, H., Chaen, Y., Hagio, T., Tsuruda, K., Jizodo, M., Matsuo, S., Xu, J., Peucheret, C. and Hamamoto, K. (2011) All-Optical Flip-Flop Operation Based on Asymmetric Active-Multimode Interferometer Bi-Stable Laser Diodes. Optics Express, 19, B119-B124. http://dx.doi.org/10.1364/OE.19.00B119
[7]
Takeda, K., Takenaka, M., Raburn, M., Kanema, Y., Barton, J.S., Song, X. and Nakano, Y. (2007) Dynamic Operation of All-Optical Flip-Flops with Distributed Bragg Reflectors for Self-Routing of 10-Gb/s Optical Packets. Japanese Journal of Applied Physics, 46, 1028-1032. http://dx.doi.org/10.1143/JJAP.46.1028
[8]
Kawaguchi, H. (1997) Bistable Laser Diodes and Their Applications: State of the Art. IEEE Journal of Selected Topics in Quantum Electronics, 3, 1254-1270.
[9]
Odagawa, T. (1991) Bistable Semiconductor Laser Diode Device. US Patent No.: 5007061.
[10]
Zoweil, H. (2010) Theoretical Modeling of an Improved All-Optical Flip Flop Based on a Nonlinear Semiconductor Distributed Feedback Laser Structure. Applied Optics, 49, 5199-5204. http://dx.doi.org/10.1364/AO.49.005199
[11]
Zoweil, H. (2015) Numerical Simulation of a Novel All-Optical Flip-Flop Based on a Chirped Nonlinear Distributed Feedback Semiconductor Laser Structure Using GPGPU Computing. Journal of Modern Optics, 62, 738-744. http://dx.doi.org/10.1080/09500340.2015.1005186
[12]
Bennett, B.R., Soref, R.A. and Del Alamo, J.A. (1990) Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP. IEEE Journal of Quantum Electronics, 26, 113-122. http://dx.doi.org/10.1109/3.44924
[13]
Adachi, S. (1992) Physical Properties of IIIV Semiconductor Compounds. John Wiley, Chichester.
[14]
Carrol, J., Whiteaway, J. and Plumb, D. (1998) Distributed Feedback Semiconductor Laser. IEE, London. http://dx.doi.org/10.1049/PBCS010E