A CO2 capture system without supercritical CO2 was
optimized for mixtures of hydrophobic room temperature ionic liquids (RTILs) and
propanol. We tested RTILs using bis(trifluoromethanesulfonyl)imide, TFSI-,
anion and four quaternary ammonium cations, two quaternary phosphonium cations,
and one imidazolium cation. The addition of 2-propanol into the RTILs clearly
promoted the capture of normal CO2(nCO2) at ambient temperature and pressure. When combined
with 2-propanol, the most efficient RTILs for nCO2 capture were N-butyl-N,N,N-trimethylammonium TFSI-.
This enhancement of nCO2 capture was not observed in RTIL mixtures with 1-propanol or in propanol
mixtures containing other phosphonium- and imidazolium-based RTILs. The torsion
angle of TFSI-, which was calculated using
References
[1]
Blanchard, L.A., Hancu, D., Beckman, E.J. and Brennecke, J.F. (1999) Green Processing Using Ionic Liquids and CO2. Nature, 399, 28-29. http://dx.doi.org/10.1038/19887
[2]
Huang, X., Margulis, C.J., Li, Y. and Berne, B.J. (2005) Why Is the Partial Molar Volume of CO2 So Small When Dissolved in a Room Temperature Ionic Liquid? Structure and Dynamics of CO2 Dissolved in [Bmim+] [PF6-]. Journal of American Chemical Society, 127, 17842-17851. http://dx.doi.org/10.1021/ja055315z
[3]
Zhuo, S., Huang, Y., Peng, C., Liu, H., Hu, Y. and Jiang, J. (2010) CO2-Induced Microstructure Transition of Surfactant in Aqueous Solution: Insight from Molecular Dynamics Simulation. Journal of Physical Chemistry B, 114, 6344-6349. http://dx.doi.org/10.1021/jp910253b
[4]
Perez-Blanco, M.E. and Maginn, E.J. (2010) Molecular Dynamics Simulations of CO2 at an Ionic Liquid Interface: Adsorption, Ordering, and Interfacial Crossing. Journal of Physical Chemistry B, 114, 11827-11837. http://dx.doi.org/10.1021/jp103862v
[5]
Babarao, R., Dai, S. and Jiang, D. (2011) Understanding the High Solubility of CO2 in an Ionic Liquid with the Tetracyanoborate Anion. Journal of Physical Chemistry B, 115, 9789-9794. http://dx.doi.org/10.1021/jp205399r
[6]
Perez-Blanco, M.E. and Maginn, E.J. (2011) Molecular Dynamics Simulations of Carbon Dioxide and Water at an Ionic Liquid Interface. Journal of Physical Chemistry B, 115, 10488-10499. http://dx.doi.org/10.1021/jp203838j
[7]
Blanchard, L.A., Gu, Z. and Brennecke, J.F. (2001) High-Pressure Phase Behavior of Ionic Liquid/CO2 Systems. Journal of Physical Chemistry B, 105, 2437-2444. http://dx.doi.org/10.1021/jp003309d
[8]
Tang, J., Tang, H., Sun, W., Plancher, H., Radosza, M. and Shen, Y. (2005) Poly(ionic liquid)s: A New Material with Enhanced and Fast CO2 Absorption. Chemical Communications, 3325-3327.
[9]
Sakellarios, N.I. and Kazarian, S.G. (2005) Solute Partitioning between an Ionic Liquid and High-Pressure CO2 Studied with in Situ FTIR Spectroscopy. Journal of Chemical Thermodynamics, 37, 621-626. http://dx.doi.org/10.1016/j.jct.2005.03.022
[10]
Bara, J.E., Carlisle, T.K., Gabriel, C.J., Camper, D., Finotello, A., Gin, D.L. and Noble, R.D. (2009) Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids. Industrial & Engineering Chemistry Research, 48, 2739-2751. http://dx.doi.org/10.1021/ie8016237
[11]
Kerle, D., Ludwig, R., Geiger, A. and Paschek, D. (2009) Temperature Dependence of the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 113, 12727-12735. http://dx.doi.org/10.1021/jp9055285
[12]
Brennecke, J.F. and Gurkan, B.E. (2010) Ionic Liquids for CO2 Capture and Emission Reduction. Journal of Physical Chemistry Letters, 1, 3459-3464. http://dx.doi.org/10.1021/jz1014828
[13]
Lei, Z., Han, J., Zhang, B., Li, Q., Zhu, J. and Chen, B. (2012) Solubility of CO2 in Binary Mixtures of Room-Temperature Ionic Liquids at High Pressures. Journal of Chemical & Engineering Data, 57, 2153-2159. http://dx.doi.org/10.1021/je300016q
[14]
Abe, H., Mori, T., Abematsu, R., Yoshimura, Y., Hatano, N., Imai, Y. and Kishimura, H. (2012) Desorption Process in Room Temperature Ionic Liquid Based-Mixtures under Vacuum. Journal of Molecular Liquids, 167, 40-46. http://dx.doi.org/10.1016/j.molliq.2011.12.009
[15]
Ozawa, S., Kishimura, H., Kitahira, S., Tamatani, K., Hirayama, K., Abe, H. and Yoshimura, Y. (2014) Isomer Effect of Propanol on Liquid-Liquid Equilibrium in Hydrophobic Room-Temperature Ionic Liquids. Chemical Physics Letters, 613, 122-126. http://dx.doi.org/10.1016/j.cplett.2014.09.003
[16]
Abe, H., Aono, M., Kameoka, S., Tsai, A-.P., Yoshimura, Y. and Ozawa, S. (2014) Impedance Spectroscopic Study Using Nanoporous Electrode on Room Temperature Ionic Liquid-Propanol Mixtures. Journal of Japan Institute of Energy, 93, 1015-1020. http://dx.doi.org/10.3775/jie.93.1015
[17]
Abe, H., Fukushima, R., Onji, M., Hirayama, K., Kishimura, H., Yoshimura, Y. and Ozawa, S. (2016) Two-Length Scale Description of Hydrophobic Room-Temperature Ionic Liquid-Alcohol Systems. Journal of Molecular Liquids, 215, 417-422. http://dx.doi.org/10.1016/j.molliq.2015.12.011
[18]
Fujii, K., Fujimori, T., Takamuku, T., Kanzaki, R., Umebayashi, Y. and Ishiguro, S. (2006) Conformational Equilibrium of Bis(trifluoromethanesulfonyl) Imide Anion of a Room-Temperature Ionic Liquid: Raman Spectroscopic Study and DFT Calculations. Journal of Physical Chemistry B, 110, 8179-8183. http://dx.doi.org/10.1021/jp0612477
[19]
Fujii, K., Soejima, Y., Kyoshoin, Y., Fukuda, S., Kanzaki, R., Umebayashi, Y., Yamaguchi, T., Ishiguro, S. and Takamuku, T. (2008) Liquid Structure of Room-Temperature Ionic Liquid, 1-Ethyl-3-methylimidazolium Bis-(trifluoromethanesulfonyl) Imide. Journal of Physical Chemistry B, 112, 4329-4336. http://dx.doi.org/10.1021/jp7105499
[20]
Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K. and Brennecke, J.F. (2007) Improving Carbon Dioxide Solubility in Ionic Liquids. Journal of Physical Chemistry B, 111, 9001-9009. http://dx.doi.org/10.1021/jp071897q
[21]
Wasserscheid, P. and Welton, T. (2003) Ionic Liquids in Synthesis. Wiley, Hoboken.
[22]
Lasse` gues, J.C., Grondin, J., Holomb, R. and Johansson, P. (2007) Raman and ab initio Study of the Conformational Isomerism in the 1-Ethyl-3-methyl-imidazolium Bis(trifluoromethanesulfonyl)imide Ionic Liquid. Journal of Raman Spectroscopy, 38, 551-558. http://dx.doi.org/10.1002/jrs.1680
[23]
Becke, A.D. (1993) Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 98, 5648-5652. http://dx.doi.org/10.1063/1.464913
[24]
Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Physical Review B, 37, 785-789. http://dx.doi.org/10.1103/PhysRevB.37.785
[25]
Schmidt, M.W., Baldridge, K.K., Boatz, .J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M. and Montgomery, J.A. (1993) General Atomic and Molecular Electronic Structure System. Journal of Computational Chemistry, 14, 1347-1363. http://dx.doi.org/10.1002/jcc.540141112
[26]
Yoshimura, Y., Takekiyo, T., Imai, Y. and Abe, H. (2012) Pressure-Induced Spectral Changes of Room-Temperature Ionic Liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium Bis(trifluoromethylsulfonyl)imide, [DEME][TFSI]. Journal of Physical Chemistry C, 116, 2097-2101. http://dx.doi.org/10.1021/jp205314f
[27]
Tsuzuki, S., Hayamizu, K. and Seki, S. (2010) Origin of the Low-Viscosity of [emim][(FSO2)2N] Ionic Liquid and Its Lithium Salt Mixture: Experimental and Theoretical Study of Self-Diffusion Coefficients, Conductivities, and Intermolecular Interactions. Journal of Physical Chemistry B, 114, 16329-16336. http://dx.doi.org/10.1021/jp106870v