全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pringsheim Convergence and the Dirichlet Function

DOI: 10.4236/apm.2016.66031, PP. 441-445

Keywords: Convergence, Pointwise Limit, Double Sequence, Pringsheim, Dirichlet Function, Baire Category Theorem, Cosine

Full-Text   Cite this paper   Add to My Lib

Abstract:

Double sequences have some unexpected properties which derive from the possibility of commuting limit operations. For example, \"\"may be defined so that the iterated limits \"\" and \"\"exist and are equal for all x, and yet the Pringsheim limit \"\" does not exist. The sequence \"\"is a classic example used to show that the iterated limit of a double sequence of continuous functions may exist, but result in an everywhere discontinuous limit. We explore whether the limit of this sequence in the Pringsheim sense equals the iterated result and derive an interesting property of cosines as a byproduct.

References

[1]  Pringsheim, A. (1897) Elementare Theorie der unendliche Doppel-reihen. Sitzungsberichte Akademie der Wissenschaft, Munich, No. 27, 101-153.
[2]  Rudin, W. (1976) Principles of Mathematical Analysis. 3rd Edition, McGraw-Hill, New York, 145.
[3]  Lejeune Dirichlet, P.G. (1829) Sur la convergence des séries trigonométriques qui servent à répresenter une fonction arbitraire entre des limites donées. Journal für reine and angewandte Mathematik, 4, 157-169.
[4]  Baire, R.-L. (1899) Sur les fonctions de variables réelles. PhD Dissertation, école Normale Supérieure.
[5]  Aliprantis, C. and Burkinshaw, O. (1998) Principles of Real Analysis. 3rd Edition, Academic Press, San Diego, CA, 73-75.
[6]  Limaye, B.V. and Zeltser, M. (2009) On the Pringsheim Convergence of Double Series. Proceedings of the Estonian Academy of Sciences, No. 58/2, 108-121.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133