Double sequences have some unexpected properties which derive from the
possibility of commuting limit operations. For example, may be defined so that the iterated limits and ?exist and are equal for all x, and yet the Pringsheim limit does not exist. The
sequence is a classic example used to show that the
iterated limit of a double sequence of continuous functions may exist, but
result in an everywhere discontinuous limit. We explore whether the limit of
this sequence in the Pringsheim sense equals the iterated result and derive an
interesting property of cosines as a byproduct.
References
[1]
Pringsheim, A. (1897) Elementare Theorie der unendliche Doppel-reihen. Sitzungsberichte Akademie der Wissenschaft, Munich, No. 27, 101-153.
[2]
Rudin, W. (1976) Principles of Mathematical Analysis. 3rd Edition, McGraw-Hill, New York, 145.
[3]
Lejeune Dirichlet, P.G. (1829) Sur la convergence des séries trigonométriques qui servent à répresenter une fonction arbitraire entre des limites donées. Journal für reine and angewandte Mathematik, 4, 157-169.
[4]
Baire, R.-L. (1899) Sur les fonctions de variables réelles. PhD Dissertation, école Normale Supérieure.
[5]
Aliprantis, C. and Burkinshaw, O. (1998) Principles of Real Analysis. 3rd Edition, Academic Press, San Diego, CA, 73-75.
[6]
Limaye, B.V. and Zeltser, M. (2009) On the Pringsheim Convergence of Double Series. Proceedings of the Estonian Academy of Sciences, No. 58/2, 108-121.