Technology development and
continuous down scaling in CMOS fabrication makes Mixed Signal Integrated
Circuits (MSIC) more vulnerable to process variation. This paper presents a
well defined novel design methodology for process variability aware design by incorporating
the major challenge of statistical circuit performance relating the device and
circuit level variation in an accurate and efficient manner to improve the
reliability, robustness and stability of the circuit. The device sensitive
parameters are identified and accurately quantified by continuous realistic
assessments using statistical methods. The modularity of the methodology can be
validated by the output performance obtained from the gain and phase response
of OTA which is highly stable when subjected to worst case process variation
scenario. In the proposed optimization, the circuit is strengthened by fixing
the optimum aspect ratio without adding any additional compensation devices
complicating the circuit resulting in low power consumption of only 0.116 mW in
standard CMOS 0.18 μm technology with 1.8 V power supply.
References
[1]
Sánchez-Sinencio, E. and Andreou, A.G. (1999) Low-Voltage Low-Power Integrated Circuits and Systems. IEEE Press, New York.
[2]
Rincón-Mora, G.A. (2000) Active Capacitor Multiplier in Miller-Compensated Circuits. IEEE Journal of Solid-State Circuits, 35, 26-32. http://dx.doi.org/10.1109/4.818917
[3]
Rincón-Mora, G.A. and Allen, P.E. (1998) A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator. IEEE Journal of Solid-State Circuits, 33, 36-44. http://dx.doi.org/10.1109/4.654935
[4]
Gregorian, R. and Temes, G.C. (1986) Analog MOS Integrated Circuits for Signals Processing. John Wiley & Sons.
[5]
Allen, P. and Holberg, D. (1987) CMOS Analog Circuit Design. Holt Rinehart and Winston Inc.
[6]
Eschauzier, R.G.H., Kerklaan, L.P.T. and Huijsing, J.H. (1992) A 100-MHz 100-dB Operational Amplifier with Multipath Nested Miller Compensation Structure. IEEE Journal of Solid-State Circuits, 27, 1709-1717. http://dx.doi.org/10.1109/4.173096
[7]
You, F., Embabi, S.H.K. and Sánchez-Sinencio, E. (1997) Multistage Amplifier Topologies with Nested G-C Compensation. IEEE Journal of Solid-State Circuits, 32, 2000-2011. http://dx.doi.org/10.1109/4.643658
[8]
Leung, K.N. and Mok, P.K.T. (2001) Nested Miller Compensation in Low Power CMOS Design. IEEE Transactions on Circuits and Systems II, 48, 388-394. http://dx.doi.org/10.1109/82.933799
[9]
Ng, H.T., Ziazadeh, R.M. and Allstot, D.J. (1999) A Multistage Amplifier Technique with Embedded Frequency Com- pensation. IEEE Journal of Solid-State Circuits, 34, 339-347. http://dx.doi.org/10.1109/4.748185
[10]
Leung, K.N., Mok, P.K.T., Ki, W.-H. and Sin, J.K.O. (2000) Three Stage Large Capacitive Load Amplifier with Damping-Factor Control Frequency Compensation. IEEE Journal of Solid-State Circuits, 35, 221-230. http://dx.doi.org/10.1109/4.823447
[11]
Thandri, B.K. and Silva-Martinez, J. (2003) A Robust Feed Forward Compensation Scheme for Multistage Operational Transconductance Amplifiers with No Miller Capacitors. IEEE Journal of Solid-State Circuits, 38, 237-243. http://dx.doi.org/10.1109/JSSC.2002.807410
[12]
Lee, H. and Mok, P.K.T. (2003) Active-Feedback Frequency Compensation Technique for Low Power Multistage Amplifiers. IEEE Journal of Solid-State Circuits, 38, 511-520. http://dx.doi.org/10.1109/JSSC.2002.808326
[13]
Zhao, X., Zhang, Q.S. and Deng, M. (2014) A 1-V Recycling Current OTA with Improved Gain-Bandwith and Input Output Range. IEICE Electronic Express, 11, 1-9.
[14]
Power, J., Donnellan, B., Mathewson, A. and Lane, W. (1994) Relating Statistical MOSFET Model Parameter Variabilitie’s to IC Manufacturing Process Fluctuations Enabling Realistic Worst Case Design. IEEE Transactions on Semiconductor Manufacturing, 7, 306-318. http://dx.doi.org/10.1109/66.311334
[15]
Chen, J., Orshansky, M., Hu, C. and Wan, C.-P. (1998) Statistical Circuit Characterization for Deep-Submicron CMOS Designs. Proceedings of ISSCC, 90-91. http://dx.doi.org/10.1109/isscc.1998.672388
[16]
Power, J.A., Mathewson, P.A. and Lane, W. (1993) An Approach for Relating Model Parameter Variabilities to Pro- cess Fluctuations. Proceedings of the 1993 International Conference on Microelectronic Test Structures, Barcelona, 22-25 March 1993, 63-68.
[17]
Orshansky, M., Chen, J.C. and Hu, C. (1999) Direct Sampling Methodology for Statistical Analysis of Scaled CMOS Technologies. IEEE Transactions on Semiconductor Manufacturing, 12, 403-408. http://dx.doi.org/10.1109/66.806117
[18]
Chen, J., Hu, C., Wan, D., Bendix, P. and Kapoor, A. (1996) E-T Based Statistical Modeling and Compact Statistical Circuit Simulation Methodologies. IEEE International Electron Devices Meeting Technical Digest, San Francisco, 8-11 December 1996, 635-638. http://dx.doi.org/10.1109/iedm.1996.554063
[19]
Stolk, P., Widdershoven, F. and Klaassen, D. (1998) Modeling Statistical Dopant Fluctuations in MOS Transistors. IEEE Transactions on Electron Devices, 45, 1960-1971. http://dx.doi.org/10.1109/16.711362
[20]
Mizuno, T., Okamura, J.-I. and Toriumi, A. (1994) Experimental Study of Threshold Voltage Fluctuation Due to Statistical Variation of Channel Dopant Number in MOSFET’s. IEEE Transactions on Electron Devices, 41, 2216-2221. http://dx.doi.org/10.1109/16.333844
[21]
Pelgrom, M.J.M., Duinmaijer, A.C.J. and Welbers, A.P.G. (1989) Matching Properties of MOS Transistors. IEEE Journal of Solid-State Circuits, 24, 1433-1439. http://dx.doi.org/10.1109/JSSC.1989.572629
[22]
Pelgrom, M., Tuinhout, H. and Vertregt, M. (2010) Modeling of MOS Matching. In: Gildenblat, G., Ed., Compact Modeling: Principles, Techniques and Applications, Springer-Verlag, New York, 453-490. http://dx.doi.org/10.1007/978-90-481-8614-3_15
[23]
Tian, Y. and Chan, P.K. (2010) Design of High-Performance Analog Circuits Using Wideband gm-Enhanced MOS Composite Transistors. IEICE Transaction on Electronics, E93-C, 1199-1208. http://dx.doi.org/10.1587/transele.E93.C.1199
[24]
Carrillo, J.M., Torelli, G. and Duque-Carrillo, J.F. (2011) Transconductance Enhancement in Bulk-Driven Input Stages and Its Applications. Analog Integrated Circuits and Signal Processing, 68, 207-217. http://dx.doi.org/10.1007/s10470-011-9603-z
[25]
Mirzaie, H.K. and Hossein, S. (2011) A 0.5 V Bulk-Input OTA with Improved Common-Mode Feedback for Low- Frequency Filtering Applications. Analog Integrated Circuits and Signal Processing, 59, 83-89.
[26]
Lo, T.-Y. and Hung, C.-C. (2008) A 40-MHz Double Differen-Tial-Pair CMOS OTA with 60-dB IM3. IEEE Transactions on Circuits and Systems I: Regular Papers, 55, 258-265. http://dx.doi.org/10.1109/TCSI.2007.910747
[27]
Hassan K. and Hossein, S. (2012) On the Design of a Low-Voltage Two Stage OTA Using Bulk-Driven and Positive Feedback Techniques. International Journal of Electronics, 99, 1309-1315. http://dx.doi.org/10.1080/00207217.2012.669710