This paper presents an
application of the simulated annealing algorithm to solve level schedules in
mixed model assembly line. Solving production sequences with both number of
setups and material usage rates to the minimum rate will optimize the level
schedule. Miltenburg algorithm (1989) is first used to get seed sequence to
optimize further. For this the utility time of the line and setup time requirement
on each station is considered. This seed sequence is optimized by simulated
annealing. This investigation helps to understand the importance of utility in
the assembly line. Up to 15 product sequences are taken and constructed by
using randomizing method and find the objective function value for this. For a
sequence optimization, a meta-heuristic seems much more promising to guide the
search into feasible regions of the solution space. Simulated annealing is a
stochastic local search meta-heuristic, which bases the acceptance of a
modified neighboring solution on a probabilistic scheme inspired by thermal
processes for obtaining low-energy states in heat baths. Experimental results
show that the simulated annealing approach is favorable and competitive
compared to Miltenburg’s constructive algorithm for the problems set
considered. It is proposed to found 16,985 solutions, the time taken for
computation is 23.47 to 130.35, and the simulated annealing improves 49.33%
than Miltenberg.
References
[1]
Monden, Y. (1983) Toyota Production System. Institute of Industrial Engineers Press, Norcross.
[2]
Miltenburg, J. (1989) Level Schedules for Mixed-Model Assembly Lines in Just-in-Time Production System. Management Science, 35, 192-207. http://dx.doi.org/10.1287/mnsc.35.2.192
[3]
Zhao, X.P. and Ohno, K. (1994) A Sequencing Problem for a Mixed-Model Assembly Line in a JIT Production System. Computers & Industrial Engineering, 27, 71-74. http://dx.doi.org/10.1016/0360-8352(94)90240-2
[4]
McMullen, P.R. (1998) JIT Sequencing for Mixed-Model Assembling Lines with Setups Using Tabu Search. Production Planning & Control, 19, 504-510. http://dx.doi.org/10.1080/095372898233984
[5]
McMullen, P.R. and Taransewich, P. (2000) Using Genetic Algorithm to Solve the Multi-Product JIT Sequencing Problem with Set-Ups. International Journal of Production Research, 38, 2653-2670. http://dx.doi.org/10.1080/002075400411411
[6]
McMullen, P.R. and Frazier, G.V. (2000) A Simulated Annealing Approach to Mixed-Model Sequencing with Multiple Objectives on a Just-in-Time Line. Institution of Industrial Engineering Transactions, 32, 679-686. http://dx.doi.org/10.1080/07408170008967426
[7]
McMullen, P.R. (2001) An Ant Colony Optimization Approach to Addressing a JIT Sequencing Problem with Multiple Objectives. Artificial Intelligence in Engineering, 15, 309-317. http://dx.doi.org/10.1016/S0954-1810(01)00004-8
[8]
Ding, Y. and Zhu, J. (2000) A Transformed Two-Stage Method for Reducing the Part-Usage Variation and a Comparison of the Product-Level and Part-Level Solutions in Sequencing Mixed-Model Assembly Line. European Journal of Operational Research, 127, 203-216. http://dx.doi.org/10.1016/S0377-2217(99)00322-7
[9]
Ponnambalam, S.G., Aravindan, P. and Subba Rao, M. (2003) Genetic Algorithms for Sequencing Problems in Mixed Model Assembly Lines. Journal of Computers and Industrial Engineering, 45, 669-690. http://dx.doi.org/10.1016/j.cie.2003.09.001
[10]
Mansouri, A. (2005) A Multi-Objective Genetic Algorithm for Mixed-Model Sequencing on JIT Assembly Lines. European Journal of Operational Research, 167, 696-716. http://dx.doi.org/10.1016/j.ejor.2004.07.016
[11]
Dhamala, T.N. and Kubiak, W. (2005) A Brief Survey of Just-in-Time Sequencing of Mixed-Model System. International Journal of Operations Research, 2, 38-47.
[12]
Boyson, N. and Scholle, A. (2012) Resequencing of Mixed-Model Assembly Lines: Survey and Research Agenda. European Journal of Operational Research, 216, 594-604. http://dx.doi.org/10.1016/j.ejor.2011.08.009
[13]
Matondang, M.Z. and Jambak, M.I. (2010) Soft Computing in Optimizing Assembly Line Balancing. Journal of Computer Science, 6, 141-162. http://dx.doi.org/10.3844/jcssp.2010.141.162
[14]
Goard, V. and Jennet, J. (2010) Optimal Sequencing of Mixed Models with Sequence-Dependent Setups and Utility Workers on an Assembly Line. International Journal of Production Economics, 123, 290-300. http://dx.doi.org/10.1016/j.ijpe.2009.09.001
[15]
Wang, H., Zhu, X.W., Wang, H., Hu, S.J., Lin, Z.Q. and Chen, G.L. (2011) Multi-Objective Optimization for Product Variety and Manufacturing Complexity in Mixed-Model Assembly Systems. Journal of Manufacturing Systems, 30, 16-27. http://dx.doi.org/10.1016/j.jmsy.2011.03.002
[16]
Yagmahan, M.M.A.L. (2011) Mixed-Model Assembly Line Balancing Using a Multi-Objective Ant Colony Optimization Approach. Expert Systems with Applications, 38, 12453-12461. http://dx.doi.org/10.1016/j.eswa.2011.04.026
[17]
Chutima, P. and Chimklai, P. (2012) Multi-Objective Two-Sided Mixed-Model Assembly Line Balancing Using Particle Swarm Optimization with Negative Knowledge. Journal Computers and Industrial Engineering, 62, 39-55. http://dx.doi.org/10.1016/j.cie.2011.08.015
[18]
Mosadegh, M., Zandign, M. and Fatemi Ghomi, S.M.T. (2012) Simultaneous Solving of Balancing and Sequencing Problems with Station-Dependent Assembly Times for Mixed-Model Assembly Lines. Applied Soft Computing, 12, 1359-1370. http://dx.doi.org/10.1016/j.asoc.2011.11.027
[19]
Akpinar, S., Bayhan, M. and Baykasoglu, A. (2013) Hybridizing ant Colony Optimization via Genetic Algorithm for Mixed-Model Assembly Line Balancing Problem with Sequence Dependent Setup Time between Tasks. Applied Soft Computing, 13, 574-589. http://dx.doi.org/10.1016/j.asoc.2012.07.024
[20]
Akpinar, S. and Baykasoglu, A. (2014) Modeling and Solving Mixed-Model Assembly Line Balancing Problem with Setups. Part II: A Multiple Colony Hybrid Bees Algorithm. Journal of Manufacturing Systems, 33, 445-461. http://dx.doi.org/10.1016/j.jmsy.2014.04.001
[21]
Ding, F.Y. and Cheng, L.P. (1993) An Effective Mixed-Model Assembly Line Sequencing Heuristic for Just-in-Time Production Systems. Journal of Operations Management, 11, 45-50. http://dx.doi.org/10.1016/0272-6963(93)90032-K
[22]
Kirkpatrick, S.C.D., Gelatt Jr., C.D. and Vecchi, M.P. (1983) Optimization by Simulated Annealing. Science, 220, 671- 680. http://dx.doi.org/10.1126/science.220.4598.671
[23]
Wilhelm, M.R. and Thomas, L.W. (1987) Solving Quadratic Assignment Problems by “Simulated Annealing”. Institution of Industrial Engineering Transactions, 19, 107-119. http://dx.doi.org/10.1080/07408178708975376
[24]
Golden, B.L. and Skiscim, C.C. (1986) Using Simulated Annealing to Solve Routing and Location Problems. Naval Research Logistics Quarterly, 33, 261-279. http://dx.doi.org/10.1002/nav.3800330209
[25]
Connolly, D.T. (1990) An Improved Annealing Scheme for the QAP. European Journal of Operational Research, 46, 93-100. http://dx.doi.org/10.1016/0377-2217(90)90301-Q
[26]
Vilarinho, P.M. and Simaria, A.S. (2002) A Two-Stage Heuristic Method for Balancing Method for Balancing Mixed- Model Assembly Line with Parallel Workstations. International Journal of Production Research, 40, 1405-1420. http://dx.doi.org/10.1080/00207540110116273