全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

G-CPT Symmetry of Quantum Emergence and Submergence—An Information Conservational Multiagent Cellular Automata Unification of CPT Symmetry and CP Violation for Equilibrium-Based Many-World Causal Analysis of Quantum Coherence and Decoherence

DOI: 10.4236/jqis.2016.62008, PP. 62-97

Keywords: Negative-Positive, Energy/Information Unification, Information Conservation, Equilibrium-Based Generalization, Complete Background-Independence, Bipolar Quantum Geometry, Bipolar Quantum Superposition, Quantum Emergence-Submergence, Quantum Coherence-Decoherence, Classical World and Quantum World, Symmetrical Measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle-antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G-CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA; on the other hand, G-CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested that all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G-CPT symmetry. It is contended that G-CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity—a fundamental departure from “what goes around comes around”. The new paradigm leads to a number of predictions and challenges.

References

[1]  Lee, T.D. and Yang, C.N. (1956) Question of Parity Conservation in Weak Interactions. Physical Review, 104, 254-258.
http://dx.doi.org/10.1103/PhysRev.104.254
[2]  Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D. and Hudson, R.P. (1957) Experimental Test of Parity Conservation in Beta Decay. Physical Review, 105, 1413-1415.
http://dx.doi.org/10.1103/PhysRev.105.1413
[3]  Christenson, J.H., Cronin, J.W., Fitch, V.L. and Turlay, R. (1964) Evidence for the 2π Decay of the k_0^2 Meson System. Physical Review Letters, 13, 138.
http://dx.doi.org/10.1103/PhysRevLett.13.138
[4]  Fermi National Accelerator Laboratory (2006) Press Release 06-19.
http://www.fnal.gov/pub/presspass/press_releases/CDF_meson.html
[5]  The Nobel Foundation (2015) The Nobel Prize in Physics.
[6]  Penrose, R. (1996) On Gravity’s Role in Quantum State Reduction. General Relativity and Gravitation, 28, 581-600.
http://dx.doi.org/10.1007/BF02105068
[7]  Weinberg, S. (2011) Collapse of the State Vector.
http://arxiv.org/abs/1109.6462
[8]  Zeh, H.D. (1970) On the Interpretation of Measurement in Quantum Theory. Foundation of Physics, 1, 69-76.
http://dx.doi.org/10.1007/BF00708656
[9]  Zurek, W.H. (1991) Decoherence and the Transition from Quantum to Classical. Physics Today, 44, 36.
http://dx.doi.org/10.1063/1.881293
[10]  Zurek, W.H. (2003) Decoherence and the Transition from Quantum to Classical—(Revised). Quantum Physics (quant-ph).
http://arxiv.org/abs/quant-ph/0306072
[11]  Everett III, H. (1957) Relative State” Formulation of Quantum Mechanics. Reviews of Modern Physics, 29, 454.
http://dx.doi.org/10.1063/1.881293
[12]  Wheeler, J.A. (1957) Assessment of Everett’s “Relative State” Formulation of Quantum Theory. Reviews of Modern Physics, 29, 463.
[13]  Wheeler, J.A., and Zurek, W.H., Eds. (1983) Quantum Theory and Measurement. Princeton University Press, Princeton..
http://dx.doi.org/10.1515/9781400854554
[14]  Takahashi, S., Tupitsyn, I.S., van Tol, J., Beedle, C.C., Hendrickson, D.N. and Stamp, P.C.E. (2011) Decoherence in Crystals of Quantum Molecular Magnets. Nature, 476, 76-79.
http://dx.doi.org/10.1038/nature10314
[15]  't Hooft, G. (2014) The Cellular Automaton Interpretation of Quantum Mechanics. A View on the Quantum Nature of our Universe, Compulsory or Impossible?
http://arxiv.org/abs/1405.1548
[16]  Zhang, W.-R. (2011) YinYang Bipolar Relativity: A Unifying Theory of Nature, Agents and Causality with Applications in Quantum Computing, Cognitive Informatics and Life Sciences. IGI Global, Hershey and New York, 201.
http://dx.doi.org/10.4018/978-1-60960-525-4
[17]  Zhang, W.-R. (2012) YinYang Bipolar Atom—An Eastern Road toward Quantum Gravity. Journal of Modern Physics, 3, 1261-1271.
http://dx.doi.org/10.4236/jmp.2012.329163
[18]  Zhang, W.-R. (2012). Beyond Spacetime Geometry—The Death of Philosophy and Its Reincarnation. Journal of Modern Physics, 3, 1272-1284.
http://dx.doi.org/10.4236/jmp.2012.329164
[19]  Zhang, W.-R. (2013). Bipolar Quantum Logic Gates and Quantum Cellular Combinatorics—A Logical Extension to Quantum Entanglement. Journal of Quantum Information Science, 3, 93-105.
http://dx.doi.org/10.4236/jqis.2013.32014
[20]  Zhang, W.-R. and Peace, K.E. (2013) Revealing the Ubiquitous Effects of Quantum Entanglement—Toward a Notion of God Logic. Journal of Quantum Information Science, 3, 143-153.
http://dx.doi.org/10.4236/jqis.2013.34019
[21]  Zhang, W.-R. and Peace, K.E. (2014) Causality Is Logically Definable—Toward an Equilibrium-Based Computing Paradigm of Quantum Agent and Quantum Intelligence (QAQI) (Survey and Research). Journal of Quantum Information Science, 4, 227-268.
http://dx.doi.org/10.4236/jqis.2014.44021
[22]  Zhang, W.-R. and Marchetti, F. (2015) A Logical Exposition of Dirac 3-Polarizer Experiment and Its Potential Impact on Computational Biology. Proceedings of ACM Conference on Bioinformatics, Computational Biology, and Health Informatics (ACM BCB), Atlanta, 9-12 September 2015, 517-518.
http://dx.doi.org/10.1145/2808719.2811438
[23]  Zhang, W.-R. and Marchetti, F. (2015) YinYang Bipolar Quantum Geometry and Bipolar Quantum Superposition Part I—A Background Independent Geometrical and Logical Exposition of Dirac 3-Polarizer Experiment. Fractal Geometry and Nonlinear Analysis in Medicine and Biology (FGNAMB), 1, 61-68.
http://dx.doi.org/10.15761/fgnamb.1000112
[24]  Zhang, W.-R. and Marchetti, F. (2015) YinYang Bipolar Quantum Geometry and bipolar Quantum Superposition Part II—Toward an Equilibrium-Based Analytical Paradigm of Quantum Mechanics and Quantum Biology. Fractal Geometry and Nonlinear Analysis in Medicine and Biology (FGNAMB), 1, 69-77.
http://dx.doi.org/10.15761/fgnamb.1000113
[25]  Zhang, W.-R. (2016) Information Conservational YinYang Bipolar Quantum-Fuzzy Cognitive Maps—Mapping Business Data to Business Intelligence. Proceedings of IEEE World Congress on Computational Intelligence—Fuzz-IEEE, Vancouver, CA, July 2016.
[26]  Zhang, W.-R. (2016) A Geometrical and Logical Unification of Mind, Light and Matter. Proceedings of 15th IEEE Int’l. Conf. on Cognitive Informatics & Cognitive Computing, Stanford University, Stanford, 22-23 August 2016.
[27]  Smolin, L. (2005) The Case for Background Independence.
http://arxiv.org/abs/hep-th/0507235
[28]  Bohr, N. (1948) On the Notions of Causality and Complementarity. Dialectica, 2, 312-319.
http://dx.doi.org/10.1111/j.1746-8361.1948.tb00703.x
[29]  Dirac, P. (1930) The Principle of Quantum Mechanics. 4th Edition, Oxford University Press Inc., New York, Reprinted 2004.
[30]  Einstein, A. (1954) Ideas and Opinions (Sonja Bargmann, Translator). Wings Books, New York, 266-270.
[31]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780.
http://dx.doi.org/10.1103/PhysRev.47.777
[32]  Boole, G. (1854) An Investigation of the Laws of Thoughts. MacMillan, London, 1854. Reprinted by Dover Books, New York, 1854.
[33]  Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
[34]  Zhang, W.-R. (2003) Equilibrium Relations and Bipolar Cognitive Mapping for Online Analytical Processing with Applications in International Relations and Strategic Decision Support. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 33. 295-307.
[35]  Zhang, W.-R. (2003) Equilibrium Energy and Stability Measures for Bipolar Decision and Global Regulation. Int’l J. of Fuzzy Sys., 5, 114-122.
[36]  Girard, J.-Y. (1987) Linear Logic. Theoretical Computer Science, 50, 1-101.
http://dx.doi.org/10.1016/0304-3975(87)90045-4
[37]  Anderson, C.D. (1933) The Positive Electron. Physical Review, 43, 491-494.
http://dx.doi.org/10.1103/physrev.43.491
[38]  Feynman, R.P. (1962) Quantum Electrodynamics. Addison Wesley, Boston.
[39]  Feynman, R.P. (1985) QED: The Strange Theory of Light and Matter. Princeton University Press, Princeton, 1985.
[40]  Dirac, P. (1931) Quantised Singularities in the Quantum Field. Proceedings of the Royal Society of London. Series A, 133, 2-3.
http://dx.doi.org/10.1098/rspa.1931.0130
[41]  Dirac, P. (1929) A Theory of Electrons and Protons. Proceedings of the Royal Society of London. Series A, 126, 360-365.
[42]  Close, F. (2009) Antimatter. Oxford University Press, Oxford.
[43]  Gell-Mann, M. (1964) A Schematic Model of Baryons and Mesons. Physics Letters, 8, 214-215.
http://dx.doi.org/10.1016/S0031-9163(64)92001-3
[44]  Feynman, R.P. (1965) Nobel Lecture: The Development of the Space-Time View of Quantum Electrodynamics. Nobelprize.org. Nobel Media AB 2014.
http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html
[45]  Hilbert, D. (1901) Mathematical Problems. Bulletin of the American Mathematical Society, 8, 437-479.
http://dx.doi.org/10.1090/S0002-9904-1902-00923-3
[46]  Jovovic, M. (2015) Stochastic Resonance Synergetics—Quantum Information Theory for Multidimensional Scaling. Journal of Quantum Information Science, 5, 47-57.
http://dx.doi.org/10.4236/jqis.2015.52007
[47]  Hawking, S. (2014) Information Preservation and Weather Forecasting for Black Holes. arXiv:1401.5761 [hep-th]
[48]  The Nobel Foundation (1979) The Nobel Prize in Physics 1979.
[49]  The Nobel Foundation (2008) The Nobel Prize in Physics 2008.
[50]  Einstein, A. (1916) The Foundation of the General Theory of Relativity. Annalen der Physik, 354, 769-822.
http://dx.doi.org/10.1002/andp.19163540702
[51]  Einstein, A. (1934) On the Method of Theoretical Physics. In: The Herbert Spencer Lecture, Mein Weltbild, QueridoVerlag, Amsterdam.
[52]  Einstein, A. (1940) Considerations Concerning the Fundaments of Theoretical Physics. Science, 91, 487-491.
http://dx.doi.org/10.1126/science.91.2369.487
[53]  Smolin, L. (2006) The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next? Houghton Mifflin Harcourt, New York.
[54]  Zhang, W.-R. and Zhang, L. (2004) YinYang Bipolar Logic and Bipolar Fuzzy Logic. Information Sciences, 165, 265-287.
http://dx.doi.org/10.1016/j.ins.2003.05.010
[55]  Zhang, W.-R. (2005) YinYang Bipolar Lattices and L-Sets for Bipolar Knowledge Fusion, Visualization, and Decision. International Journal of Information Technology & Decision Making, 4, 621-645.
http://dx.doi.org/10.1142/s0219622005001763
[56]  Zhang, W.-R. (2006) YinYang Bipolar Fuzzy Sets and Fuzzy Equilibrium Relations for Bipolar Clustering, Optimization, and Global Regulation. International Journal of Information Technology & Decision Making, 5, 19-46.
http://dx.doi.org/10.1142/s0219622006001885
[57]  Zhang, W.-R. (2007) YinYang Bipolar Universal Modus Ponens (BUMP)—A Fundamental Law of Non-Linear Brain Dynamics for Emotional Intelligence and Mental Health. Proceedings of the 10th Joint Conference of Information Sciences, Salt Lake City, 18-24 July 2007, 89-95.
[58]  Zhang, W.-R., Pandurangi, A. and Peace, K. (2007) YinYang Dynamic Neurobiological Modeling and Diagnostic Analysis of Major Depressive and Bipolar Disorders. IEEE Transactions on Biomedical Engineering, 54, 1729-39.
http://dx.doi.org/10.1109/tbme.2007.894832
[59]  Zhang, W.-R., Zhang, H.J., Shi, Y. and Chen, S.S. (2009) Bipolar Linear Algebra and YinYang-N-Element Cellular Networks for Equilibrium-Based Biosystem Simulation and Regulation. Journal of Biological Systems, 17, 547-576.
http://dx.doi.org/10.1142/S0218339009002958
[60]  Hawking, S. (1974) Black Hole Evaporation. Nature, 248, 30-31. http://dx.doi.org/10.1038/248030a0
[61]  Hawking, S. (1975) Particle Creation by Black Holes. Communications in Mathematical Physics, 43, 199-220.
http://dx.doi.org/10.1007/BF02345020

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133