全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gas Chromatography as an Analytical Monitoring Technique for Hydrogen Production from Spirulina maxima 2342

DOI: 10.4236/gsc.2016.62007, PP. 78-87

Keywords: Hydrogen Fuel, Biological Catalysts, Photo-Biological Production, Cyanobacteria, Fuel Cell, Solar Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydrogen (H2) production from experiments with Spirulina maxima 2342 is reported in this work. The performance of this photosynthetic microorganism for producing H2 was evaluated for the first time under specific experimental conditions (e.g., a biomass concentration of 0.34 ± 0.02 g, a light intensity of 150 μE.s-1.m-2 and reaction times of 19.3 ± 1.2 h). The performance of this photosynthetic microorganism for producing hydrogen was successfully improved by the addition of sodium dithionite (a reducing agent) as an innovative method for increasing the gas production, and as a main contribution of this work. Quantitative gas chromatography (GC) analyses of H2 to verify the production performance were successfully carried out at low concentration levels. GC analyses were performed by means of a conventional thermal conductivity detector coupled to a separation system of a Molecular Sieve column 500 mm × 3175 mm (L × ID). Low detection limits were consistently obtained with the GC system used. The separation of H2 in culture samples was

References

[1]  Darmstadter, J. (2010) The Prospective Role of Unconventional Liquid Fuels Resources for the Future.
http://nepinstitute.org/get/RFF_Reports/Background-Papers/RFF-NEPI-Darmstadter-AltLiquidFuels.pdf
[2]  World Energy Insight (WEI) (2012) World Energy Council. Istanbul
http://www.worldenergy.org/wp-content/uploads/2012/10/PUB_World-Energy-Insight_2012_WEC.pdf
[3]  Browne, J. (2013) Proposal—The Energy Crisis and Climate. Global Economic Symposium Change.
http://www.global-economic-symposium.org/knowledgebase/the-global-environment/the-energy-crisis-and-climate-change/proposals/the-energy-crisis-and-climate-change
[4]  Min, H. and Sherman, L. (2010) Hydrogen Production by the Unicellular, Diazotrophic Cyanobacterium Cyanothece sp. Strain ATCC 51142 under Conditions of Continuous Light. Applied and Environmental Microbiology, 13, 4293-4301.
http://dx.doi.org/10.1128/AEM.00146-10
[5]  Hemschemeier, A., Melis, A. and Happe, T. (2009) Analytical Approaches to Photobiological Hydrogen Production in Unicellular Green Algae. Photosynthesis Research, 102, 523-540.
http://dx.doi.org/10.1007/s11120-009-9415-5
[6]  Eroglu, E. and Melis, A. (2011) Photobiological Hydrogen Production: Recent Advances and State of the Art. Bioresource Technology, 102, 8403-8413.
http://dx.doi.org/10.1016/j.biortech.2011.03.026
[7]  Skizim, N.J., Ananyev, G.M., Krishnan, A. and. Dismukes, G. (2012) Metabolic Pathways for Photobiological Hydrogen Production by Nitrogenase- and Hydrogenase-Containing Unicellular Cyanobacteria Cyanothece. The Journal of Biological Chemistry, 4, 2777-2786.
http://dx.doi.org/10.1074/jbc.M111.302125
[8]  McKinlay, J.B. and Harwood, C.S. (2010) Photobiological Production of Hydrogen Gas as a Biofuel. Current Opinion in Biotechnology, 3, 244-251.
http://dx.doi.org/10.1016/j.copbio.2010.02.012
[9]  McNeely, K., Xu, Y., Bennette, N., Bryant, D. and Dismukes, G. (2010) Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium. Applied and Environmental Microbiology, 15, 5032-5038.
http://dx.doi.org/10.1128/AEM.00862-10
[10]  McNeely, K., Xu, Y., Ananyev, G., Bennette, N., Bryant, D. and Dismukes, G. (2011) Synechococcus sp. Strain PCC 7002 nifJ Mutant Lacking Pyruvate: Ferredoxin Oxidoreductase. Applied and Environmental Microbiology, 7, 2435-2444.
http://dx.doi.org/10.1128/AEM.02792-10
[11]  Chi, Y., Chen, F. and Takiguchi, Y. (2015) Effect of Nitrogen Source on Biomass and Lipid Production of a Marine Microalga, Nannochloropsis oceanica IMET1. Green and Sustainable Chemistry, 5, 101-106.
http://dx.doi.org/10.4236/gsc.2015.52013
[12]  Pinto, F., Van Elburg, K., Pacheco, C., Lopo, M., Noirel, A., Montagud, A., Urchueguia, F., Wright, P. and Tamagnini, P. (2012) Construction of a Chassis for Hydrogen Production: Physiological and Molecular Characterization of a Synechocystis sp. PCC 6803 Mutant Lacking a Functional Bidirectional Hydrogenase. Microbiology, 158, 448-464.
http://dx.doi.org/10.1099/mic.0.052282-0
[13]  Carrieri, D., Ananyev, G., Lenz, O. and Donald, A. (2011) Contribution of a Sodium Ion Gradient to Energy Conservation during Fermentation in the Cyanobacterium Arthrospira (Spirulina) maxima CS-328. Applied and Environmental Microbiology, 20, 7185-7194.
http://dx.doi.org/10.1128/AEM.00612-11
[14]  Juantorena, A.U. (2007) Hydrogen Production from Fhotosynthetic Microorganisms for Use in PEM Fuel Cells Engineering. PhD Thesis, CIE-UNAM, Mexico.
[15]  Juantorena, A.U., Sebastian, P.J., Santoyo, E., Gamboa, S., Lastres, O., Sánchez, D., Bustos, A. and Eapen, D. (2007) Hydrogen Production Employing Spirulina maxima 2342: A Chemical Analysis. International Journal of Hydrogen Energy, 32, 3133-3136.
http://dx.doi.org/10.1016/j.ijhydene.2006.02.033
[16]  Carrieri, D. (2009) Physiological Control of Photosynthesis and Fermentation in the Cyanobacterium Arthrospira (Spirulina) maxima CS-328 for Biofuel Production. PhD Thesis, Princeton University, Princeton.
[17]  Juantorena, A.U., Lastres, O., Hernández, G., Bustos, A., Sebastian, P.J. and Eapen, D. (2012) Hydrogen Production by Microorganisms and Its Application in a PEMFC. International Journal of Energy Research, 26, 902-910.
http://dx.doi.org/10.1002/er.1844
[18]  Sulu, M. (2009) The Process Intensification of Biological Hydrogen Production by Escherichia coli HD701. PhD Thesis, The University of Birmingham, Birmingham.
[19]  Ogawa, T. and Terui, G. (1972) Growth Kinetics of Spirulina platensis in Autotrophic and Mixotrophic Cultures. In: Terui, G., Ed., Proceedings of IV IFS: Fermentation Technology Today, Society of Fermentation Technology, Osaka, 543-549.
[20]  Arnon, D. (1949) Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
http://dx.doi.org/10.1104/pp.24.1.1
[21]  QuimNet (2008).
http://www.quiminet.com/articulos/usos-y-aplicaciones-del-hidrosulfito-de-sodio-30261.htm
[22]  ágreda, F., Arcia, E., Jované, S., Pino, E., Tufino, E. and Lagrutta, F. (2004) Frecuencia de Portadores del Alelo S en la Población de 15-49 anos de Portobelo. Panamá. Revista Médico Científica, 17, 20.
[23]  Oswald, W. (1977) Handbook of Microbiology. CRC Press, Cleveland.
[24]  Wünschiers, R. and Lindblad, P. (2002) Hydrogen in Education—A Biological Approach. International Journal of Hydrogen Energy, 27, 1131-1140.
http://dx.doi.org/10.1016/S0360-3199(02)00098-8
[25]  Nath, K. and Das, D. (2004) Improvement of Fermentative Hydrogen Production: Various Approaches. Applied Microbiology and Biotechnology, 65, 520-529.
http://dx.doi.org/10.1007/s00253-004-1644-0
[26]  Skizim, N., Ananyev, G., Krishnan, A. and Dismukes, G. (2012) Metabolic Pathways for Photobiological Hydrogen Production by Nitrogenase and Hydrogenase-Containing Unicellular Cyanobacteria Cyanothece. Journal of Biological Chemistry, 287, 2777-2786.
http://dx.doi.org/10.1074/jbc.M111.302125
[27]  Rocheleau, R. (2000) Biohydrogen Production. Report to the US Department of Energy Hydrogen Program, Hawaii Natural Energy Institute, University of Hawaii, Honolulu.
[28]  Ananyev, G., Carrieri, D. and Dismukes, G. (2008) Optimization of Metabolic Capacity and Flux through Environmental Cues to Maximize Hydrogen Production by the Cyanobacterium “Arthrospira (Spirulina) maxima”. Applied and Environmental Microbiology, 19, 6102-6113.
http://dx.doi.org/10.1128/AEM.01078-08
[29]  Borodin, V., Rao, K. and Hall, D. (2002) Manifestation of Behavioral and Physiological Functions of Synechococcus sp. Miami BG 043511 in a Photobioreactor. Marine Biology, 140, 455-463.
http://dx.doi.org/10.1007/s00227-001-0721-5
[30]  Bandyopadhyay, A., Stockel, J., Min, H., Sherman, L. and Pakrasi, H. (2010) High Rates of Photobiological H2 Production by a Cyanobacterium under Aerobic Conditions. Nature Communications, 1, 139.
http://dx.doi.org/10.1038/ncomms1139
[31]  Dutta, D., De, D., Chaudhuri, S. and Bhattacharya, S. (2005) Hydrogen Production by Cyanobacteria. Microbial Cell Factories, 4, 36.
http://dx.doi.org/10.1186/1475-2859-4-36
[32]  Carrieri, D., Ananyev, G., Costas, A., Bryant, D. and Dismukes, G. (2008) Renewable Hydrogen Production by Cyanobacteria: Nickel Requirements for Optimal Hydrogenase Activity. International Journal of Hydrogen Energy, 33, 2014-2022.
http://dx.doi.org/10.1016/j.ijhydene.2008.02.022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133