全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiplier Design Utilizing Tri Valued Logic for RLNS Based DSP Applications

DOI: 10.4236/cs.2016.74036, PP. 417-433

Keywords: Residue Number System (RNS), Residue Logarithmic Number System (RLNS), Tri Valued Logic (TVL), Binary Logic, Error Correction Circuits

Full-Text   Cite this paper   Add to My Lib

Abstract:

Residue Number System (RNS) has proved shaping the Digital Signal Processing (DSP) units into highly parallel, faster and secured entities. The computational complexity of the multiplication process for a RNS based design can be reduced by indulging Logarithmic Number System (LNS). The combination of these unusual number systems forms Residue Logarithmic Number System (RLNS) that provides simple internal architectures. Till date RLNS based processing units are designed for binary logic based circuits. In order to reduce the number of input output signals in a system, the concept of Multiple Valued Logic (MVL) is introduced in literature. In that course of research, this paper uses Tri Valued Logic (TVL) in RLNS technique proposed, to further reduce the chip area and delay value. Thus in this research work three different concepts are proposed, it includes the design of multiplier for RLNS based application for number of bits 8, 16 and 32. Next is the utilization of TVL in the proposed multiplication structure for RLNS based system along with the error correction circuits for the ternary logarithmic and antilogarithmic conversion process. Finally the comparison of the two multiplication schemes with the existing research of multiplier design for RNS based system using booth encoding concepts. It can be found that the proposed technique using TVL saves on an average of about 63% of area occupied and 97% of delay value respectively than the existing technique.

References

[1]  Wei, W., Swamy, M.N.S. and Ahmad, M.O. (2004) RNS Application for Digital Image Processing. Proceedings. 4th IEEE International Workshop on System-on-Chip for Real-Time Applications, 19-21 July 2004, 77-80.
[2]  Cardarilli, G.C., Nannarelli, A. and Re, M. (2007) Residue Number System for Low-Power DSP Applications. Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 4-7 November 2007, 1412-1416.
http://dx.doi.org/10.1109/acssc.2007.4487461
[3]  Jenkins, W. K. and Leon, B. J. (1977) The Use of Residue Number Systems in the Design of Finite Impulse Response Digital Filters. IEEE Transactions on Circuits and Systems, 24, 191-201.
http://dx.doi.org/10.1109/TCS.1977.1084321
[4]  Conway, R. and Nelson, J. (2004) Improved RNS FIR Filter Architectures. IEEE Transactions on Circuits and Systems II: Express Briefs, 51, 26-28.
[5]  Ramirez, J., Meyer-Base, U. and Garcia, A. (2005) Efficient RNS-Based Design of Programmable FIR Filters Targeting FPL Technology. Journal of Circuits, Systems and Computers, 14, 165.
http://dx.doi.org/10.1142/S0218126605002131
[6]  Ammar, A., Al Kabbany, A., Youssef, M. and Amam, A. (2001) A Secure Image Coding Using Residue Number System. Proceedings of the 18th National Radio Science Conference, 2, 399-405.
http://dx.doi.org/10.1109/nrsc.2001.929397
[7]  Younes, D. and Steffan, P. (2013) Efficient Image Processing Application Using Residue Number System. Proceedings of the 20th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES), Gdynia, 20-22 June 2013, 468-472.
[8]  Navin, A.H., et al. (2011) A Novel Approach Cryptography by Using Residue Number System. Proceedings of 6th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), Seogwipo, 29 November-1 December 2011, 636-639.
[9]  Posch, K.C. and Posch, R. (1992) Residue Number System: A Key to Parallelism in Public Key Cryptography. Proceedings of the Fourth IEEE Symposium on Parallel and Distributed Processing, Arlington, TX, 1-4 December 1992, 432-435.
[10]  Schinianakis, D.M., Kakarountas, A.P. and Stouraitis, T. (2006) A Novel Approach to Elliptic Curve Cryptography: An RNS Architecture. Proceedings of IEEE Mediterranean Electrotechnical Conference (MELECON), Malaga, 16-19 May 2006, 1241-1245.
[11]  Kong, Y. and Lai, Y.F. (2013) Low Latency Modular Multiplication for Public-Key Cryptosystems Using a Scalable Array of Parallel Processing Elements. Proceedings of IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, 4-7 August 2013, 1039-1042.
http://dx.doi.org/10.1109/mwscas.2013.6674830
[12]  Abdallah, M. and Skavantzos, A. (1995) A Systematic Approach for Selecting Practical Moduli Sets for Residue Number Systems. Southeastern Symposium on System Theory, Starkville, 12-14 March 1995, 445-449.
http://dx.doi.org/10.1109/ssst.1995.390542
[13]  Wang, W., Swamy, M.N.S. and Ahmad, M.O. (2003) Moduli Selection in RNS for Efficient VLSI Implementation. Proceedings of the 2003 International Symposium on Circuits and Systems, 4, 512-515.
http://dx.doi.org/10.1109/iscas.2003.1205945
[14]  Paliouras, V. and Stouraitis, T. (2001) Low-Power Properties of the Logarithmic Number System. Proceedings of the 15th IEEE Symposium on Computer Arithmetic, Vail, 11-13 June 2001, 229-236.
http://dx.doi.org/10.1109/arith.2001.930124
[15]  Agrawal, R.K. and Kittur, H.M. (2013) ASIC Based Logarithmic Multiplier Using Iterative Pipelined Architecture. Proceedings of the IEEE Conference on Information and Communication Technologies (ICT), JeJu Island, 11-12 April 2013, 362-366.
http://dx.doi.org/10.1109/cict.2013.6558121
[16]  Lewis, D.M. (1995) 114 MFLOPS Logarithmic Number System Arithmetic Unit for DSP Applications. IEEE Journal of Solid-State Circuits, 30, 1547-1553.
http://dx.doi.org/10.1109/4.482205
[17]  Arnold, M.G. (2005) The Residue Logarithmic Number System: Theory and Implementation. Proceedings of the 17th IEEE Symposium on Computer Arithmetic, 27-29 June 2005, 196-205.
http://dx.doi.org/10.1109/ARITH.2005.44
[18]  Lee, B. and Burgess, N. (2003) A Dual-Path Logarithmic Number System Addition/Subtraction Scheme for FPGA. In: Cheung, P.Y.K. and Constantinides, G.A., Eds., Field Programmable Logic and Application, Springer-Verlag Berlin Heidelberg, 808-817.
http://dx.doi.org/10.1007/978-3-540-45234-8_78
[19]  Mousavi, A. and Taleshmekaeil, D.K. (2010) Pipelined Residue Logarithmic Number System for General Modules Set {2N ? 1, 2N, 2N + 1}. Proceedings of the IEEE 5th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), Seoul, 30 November-2 December 2010, 699-703.
http://dx.doi.org/10.1109/ICCIT.2010.5711144
[20]  Srivastava, A. and Venkatapathy, K. (1996) Design and Implementation of Low Power Ternary Full Adder. VLSI Design, 4, 75-81.
http://dx.doi.org/10.1155/1996/94696
[21]  Butler, J.T. (1991) Multiple-Valued Logic in VLSI. IEEE Computer Society Press Technology Series, Los Alamitos.
[22]  Kameyama, M. (1990) Toward the Age of Beyond-Binary Electronics and Systems. Proceedings of the 20th International Symposium on Multiple-Valued Logic, Charlotte, 23-25 May 1990, 162-166.
http://dx.doi.org/10.1109/ISMVL.1990.122613
[23]  Yoeli, M. and Rosenfeld, G. (1965) Logical Design of Ternary Switching Circuits. IEEE Transactions on Electronic Computers, EC-14, 19-29.
http://dx.doi.org/10.1109/PGEC.1965.264050
[24]  Balla, P.C. and Antoniou, A. (1984) Low Power Dissipation MOS Ternary Logic Family. IEEE Journal of Solid-State Circuits, 19, 739-749.
http://dx.doi.org/10.1109/JSSC.1984.1052216
[25]  Das, S., Dasgupta, P. and Sensarma, S. (2012) Arithmetic Algorithms for Ternary Number System. In: Rahaman, H., Chattopadhyay, S. and Chattopadhyay, S., Eds., Progress in VLSI Design and Test, Springer, Berlin Heidelberg, 111- 120.
http://dx.doi.org/10.1007/978-3-642-31494-0_13
[26]  Smith, K.C. (1981) The Prospects for Multi Valued Logic: A Technology and Application View. IEEE Transactions on Computers, C-30, 619-634.
http://dx.doi.org/10.1109/TC.1981.1675860
[27]  Hurst, S.L. (1988) Two Decades of Multiple Valued Logic—An Invited Tutorial. Proceedings of the 18th International Symposium on Multiple-Valued Logic, Palma de Mallorca, 24-26 May 1988, 164-175.
http://dx.doi.org/10.1109/ismvl.1988.5170
[28]  Vranesic, Z.G. and Hamacher, V.C. (1971) Ternary Logic in Parallel Multipliers. The Computer Journal, 15, 254-258.
http://dx.doi.org/10.1093/comjnl/15.3.254
[29]  Mouftah, H.T. and Jordan, I.B. (1977) Design of Ternary COS/MOS Memory and Sequential Circuits. IEEE Transactions on Computers, C-26, 281-288.
http://dx.doi.org/10.1109/TC.1977.1674821
[30]  Mouftah, H.T. (1976) A Study on the Implementation of Three Valued Logic. Proceedings of the 6th International Symposium on Multiple-Valued Logic, 123-126.
[31]  Mouftah, H.T. and Smith, K.C. (1980) Design and Implementation of Three-Valued Logic Systems with M.O.S. Integrated Circuits. IEE Proceedings G-Electronic Circuits and Systems, 127, 165-168.
http://dx.doi.org/10.1049/ip-g-1.1980.0028
[32]  Gaikwad, V.T. and Deshmukh, P.R. (2015) Design of CMOS Ternary Logic Family based on Single Supply Voltage. Proceedings of IEEE International Conference on Pervasive Computing (ICPC), Pune, 8-10 January 2015, 8-10.
http://dx.doi.org/10.1109/pervasive.2015.7087114
[33]  Hosseinzadeh, M. and Navi, K. (2007) A New Moduli Set for Residue Number System in Ternary Valued Logic. Journal of Applied Sciences, 7, 3729-3735.
http://dx.doi.org/10.3923/jas.2007.3729.3735
[34]  Hosseinzadeh, M., Jassbi, S.J. and Navi, K. (2008) A New Moduli Set {3N ? 1, 3N + 1, 3N + 2, 3N ? 2} in Residue Number System. 10th International Conference on Advanced Communication Technology, Gangwon-Do, 17-20 February 2008, 1601-1603.
[35]  Arnold, M., Bailey, T. and Cowles, J. (2003) Error Analysis of the Kmetz/Maenner Algorithm. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 33, 37-53.
http://dx.doi.org/10.1023/A:1021189701352
[36]  Brubaker, T.A. and Becker, J.C. (1975) Multiplication Using Logarithms Implemented with Read-Only-Memory. IEEE Transactions on Computers, 24, 761-766.
http://dx.doi.org/10.1109/T-C.1975.224307
[37]  Mitchell Jr., J.N. (1962) Computer Multiplication and Division Using Binary Logarithms. IEEE Transactions on Electronic Computers, 11, 512-517.
http://dx.doi.org/10.1109/TEC.1962.5219391
[38]  Combet, M., Van Zonneveld, H. and Verbeek, L. (1965) Computation of the Base Two Logarithm of Binary Numbers. IEEE Transactions on Electronic Computers, 14, 863-867.
http://dx.doi.org/10.1109/PGEC.1965.264080
[39]  Hall, E.L., Lynch, D.D. and Dwyer, S.J. (1970) Generation of Products and Quotients Using Approximate Binary Logarithms for Digital Filtering Applications. IEEE Transactions on Electronic Computers, 19, 97-105.
http://dx.doi.org/10.1109/T-C.1970.222874
[40]  SanGregory, S.L., Brothers, C., Gallagher, D. and Siferd, R. (1999) A Fast, Low-Power Logarithm Approximation with CMOS VLSI Implementation. 42nd Midwest Symposium on Circuits and Systems, 1, 388-391.
http://dx.doi.org/10.1109/MWSCAS.1999.867287
[41]  Abed, K.H. and Siferd, R.E. (2003) CMOS VLSI Implementation of a Low-Power Logarithmic Converter. IEEE Transactions on Computers, 52, 1421-1433.
http://dx.doi.org/10.1109/TC.2003.1244940
[42]  Mahalingam, V. and Ranganathan, N. (2006) Improving Accuracy in Mitchell’s Logarithmic Multiplication Using Operand Decomposition. IEEE Transactions on Computers, 55, 1523-1535.
http://dx.doi.org/10.1109/TC.2006.198
[43]  Mahalingam, V. and Ranganathan, N. (2006) An Efficient and Accurate Logarithmic Multiplier Based on Operand Decomposition. 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID’06), 3-7 January 2006.
http://dx.doi.org/10.1109/vlsid.2006.42
[44]  Parhami, B. (2000) Computer Arithmetic: Algorithms and Hardware Design. Oxford University Press, Oxford.
[45]  Mohan, P.V.A. (2007) RNS-to-Binary Converter for a New Three-Moduli Set {2n+1 ? 1, 2n , 2n ? 1}. IEEE Transactions on Circuits and Systems II: Express Briefs, 54, 775-779.
http://dx.doi.org/10.1109/TCSII.2007.900844
[46]  Hariri, A., Navi, K. and Rastegar, R. (2008) A New High Dynamic Range Moduli Set with Efficient Reverse Converter. Computers & Mathematics with Applications, 55, 660-668.
http://dx.doi.org/10.1016/j.camwa.2007.04.028
[47]  Cao, B., Chang, C.H. and Srikanthan, T. (2003) Adder Based Residue to Binary Converters for a New Balanced 4-Moduli Set. Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2, 820-825.
[48]  Cao, B., Chang, C.H. and Srikanthan, T. (2003) An Efficient Reverse Converter for the 4-Moduli Set {2N ? 1, 2N, 2N + 1, 22N + 1} Based on the New Chinese Remainder Theorem. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50, 1296-1303.
http://dx.doi.org/10.1109/TCSI.2003.817789
[49]  Abed, K.H. and Siferd, R.E. (2003) VLSI Implementation of a Low-Power Antilogarithmic Converter. IEEE Transactions on Computers, 52, 1221-1228.
http://dx.doi.org/10.1109/TC.2003.1228517
[50]  Oklobdzija, V. (1992) An Implementation Algorithm and Design of a Novel Leading Zero Detector Circuit. Signals, Conference Record of the 26th Asilomar Conference on Systems and Computers, Pacific Grove, 26-28 October 1992, 391-395. http://dx.doi.org/10.1109/acssc.1992.269243
[51]  Oklobdzija, V. (1994) An Algorithmic and Novel Design of a Leading Zero Detector Circuit: Comparison with Logic Synthesis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2, 124-128.
http://dx.doi.org/10.1109/92.273153
[52]  Abed, K.H. and Siferd, R.E. (2000) CMOS VLSI Implementation of 16-Bit Logarithm and Anti-Logarithm Converter. Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 2, 776-779.
http://dx.doi.org/10.1109/MWSCAS.2000.952871
[53]  Samhitha, N.R., Cherian, N.A., Jacob, P.M. and Jayakrishnan, P. (2013) Implementation of 16-bit floating point multiplier using Residue Number System. 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Chennai, 12-14 December 2013, 195-198.
http://dx.doi.org/10.1109/icgce.2013.6823427
[54]  Muralidharan, R. and Chang, C.-H. (2012) Area-Power Efficient Modulo 2n ? 1 and Modulo 2n + 1 Multipliers for {2n ? 1, 2n, 2n + 1}. IEEE Transactions on Circuits and Systems I: Regular Papers, 59, 2263-2273.
http://dx.doi.org/10.1109/TCSI.2012.2185334

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133