全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Rac1/p38 and ERK-Dependent Cytosolic Phospholipase A2 Activation in Porphyromonas gingivalis-Evoked Induction in Matrix Metalloproteinase-9 (MMP-9) Release by Salivary Gland Cells

DOI: 10.4236/jbm.2016.44010, PP. 68-79

Keywords: P. gingivalis LPS, Oral Mucosa, Rac1, p38, ERK, cPLA2 Activation MMP-9 Release

Full-Text   Cite this paper   Add to My Lib

Abstract:

Matrix metalloproteinase-9 (MMP-9) is a highly glycosylated endopeptidase implicated in a wide rage of oral mucosal inflammatory and neoplastic diseases, including chronic periodontitis, a persistent mucosal inflammation attributed primarily to infection by oral anaerobe, P. gingivalis. In this study, we explored the role of Rac1 and mitogen-activated protein kinases (MAPKs) in the processes of MMP-9 release in sublingual salivary gland cells exposed to P. gingivalis key endotoxin, cell wall lipopolysaccharide (LPS). We demonstrate that the LPS-elicited induction in the acinar cell MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we reveal that the LPS-induced MMP-9 release involves ERK-mediated phosphorylation of cPLA2 on Ser505 that is essential for its membrane translocation with Rac1, and that this process requires p38 activation. Moreover, we show that phosphorylation and membrane localization of p38 with Rac1-GTP play a pivotal role in cPLA2-dependent induction in MMP-9 release. Thus collectively, our findings infer that P. gingivalis LPS-induced up-regulation in the acinar cell MMP-9 release requires ERK-dependent recruitment of cPLA2 to the membrane localized Rac1/p38 complex.

References

[1]  Vandooren, J., Van den Steen, P.E. and Opdenakker, G. (2013) Biochemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 (MMP-9): The Next Decade. Critical Reviews in Biochemistry and Molecular Biology, 48, 222-272.
http://dx.doi.org/10.3109/10409238.2013.770819
[2]  Ramm, M., Sherr, Y. and Shoenfeld, Y. (2006) Matrix Metalloproteinase-9 and Autoimmune Diseases. Journal of Clinical Immunology, 26, 299-307.
http://dx.doi.org/10.1007/s10875-006-9022-6
[3]  Perez, P., Kwon, Y.J., Alliende, C., et al. (2005) Increased Acinar Damage of Salivary Glands of Patients with Sjogren’s Syndrome Is Paralleled by Simultaneous Imbalance of Metalloproteinase-3/Tissue Inhibitor of Metalloproteinase-1 and Matrix Metalloproteinase-9/Tissue Inhibitor of Metalloproteinases-1 Ratios. Arthritis & Rheumatism, 50, 2751-2760.
http://dx.doi.org/10.1002/art.21265
[4]  Vilen, S.T., Salo, T., Sorsa, T. and Nyberg, P. (2013) Fluctuating Roles of Matrix Metalloproteinase-9 in Oral Squamous Cell Carcinoma. The Scientific World Journal, 2013, Article ID: 920595.
http://dx.doi.org/10.1155/2013/920595
[5]  Ejeil, A.L., Igondio-Tchen, S., Ghomrasseni, S., Pellat, B., Godeau, G. and Gogly, B. (2003) Expression of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs) in Healthy and Diseased Human Gingiva. Journal of Periodontology, 74, 188-195.
http://dx.doi.org/10.1902/jop.2003.74.2.188
[6]  Paulusova, V., Laco, J., Drizhal, I. and Slezak, R. (2012) Expression of Matrix Metalloproteinase-9 in Patients with Oral Lichen Planus. Acta Medica (Hradec Karlove), 55, 23-26.
http://dx.doi.org/10.14712/18059694.2015.70
[7]  Claveau I., Mostefaoui, Y. and Rouabhia, M. (2004) Basement Membrane Protein and Matrix Metalloproteinase Deregulation in Engineered Human Oral Mucosa Following Infection with Candida albicans. Matrix Biology, 23, 477-486.
http://dx.doi.org/10.1016/j.matbio.2004.08.006
[8]  Colombo, A.P., Boches, S.K. and Cotton, S.L. (2009) Comparisons of Subgingival Microbial Profiles of Refractory Periodontitis, Severe Periodontitis, and Periodontal Health Using the Human Oral Microbe Identification Microarray. Journal of Periodontology, 80, 1421-1432.
http://dx.doi.org/10.1902/jop.2009.090185
[9]  Woo, C.H., Lim, J.H. and Kim, J.H. (2004) Lipopolysaccharide Induces Matrix Metalloproteinase-9 Expression via Mitochondrial Reactive Oxygen Species-p38 Kinase-Activator Protein-1Pathway in Raw 264.7 Cells. Journal of Immunology, 173, 6973-6980.
http://dx.doi.org/10.4049/jimmunol.173.11.6973
[10]  Binker, M.G., Binker-Cosen, A., Richards, D., Oliver, B. and Coswn-Binker, L.I. (2009) LPS-Stimulated MUC5AC Production Involves Rac-1-Dependent MMP-9 Secretion and Activation in NCI-H292 Cells. Biochemcal and Biophysical Research Communications, 386,124-129.
http://dx.doi.org/10.1016/j.bbrc.2009.05.136
[11]  Jotwani, R., Eswaran, S.V.K., Moonga, S. and Cutler, C.W. (2010) MMP-9/TIMP-1 Imballance Induced in Human Dendritic Cells by Porphyromonas gingivalis. Federation of European Microbiological Societies Immunology and Medical Microbiology, 50, 314-321.
[12]  Slomiany, B.L. and Slomiany, A. (2007) Alteration by Indomethacin in Proinflammatory Consequences of Salivary Gland Cytosolic Phospholipase A2 Activation by Porphyromonas gingivalis: Role of Leptin. Journal of Applied Research, 7, 127-136.
[13]  Mysak, J., Podzimek, S., Sommerova, P., et al. (2014) Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview. Journal of Immunology Research, 2014, Article ID: 476068.
http://dx.doi.org/10.1155/2014/476068
[14]  Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gingi-valis-Stimulated TACE Activation for TGF-α Ectodomian Shedding and EGFR Transactivation in Salivary Gland Cells Requires Rac1-Dependent p38 MAPK Membrane Localization. Journal of Biosciences and Medicines, 3, 42-53.
http://dx.doi.org/10.4236/jbm.2015.311005
[15]  McCawley, L.J. and Matrisian, L.M. (2001) Matrix Metallo-proteinases: They’re Not Just for Matrix Anymore! Current Opinions in Cell Biology, 13, 534-540.
http://dx.doi.org/10.1016/S0955-0674(00)00248-9
[16]  Slomiany, B.L. and Slomiany, A. (2013) Involvement of p38 MAPK-Dependent Activator Protein (AP-1) Activation in Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori by Ghrelin. Inflammopharmacology, 21, 67-78.
http://dx.doi.org/10.1007/s10787-012-0141-9
[17]  Slomiany, B.L. and Slomiany, A. (2013) Induction in Gastric Mucosal Prostaglandin and Nitric Oxide by Helicobacter pylori Is Dependent on MAPK/ERK-Mediated Activation of IKK-β and cPLA2: Modulatory Effect of Ghrelin. Inflammopharmacology, 21, 241-251.
http://dx.doi.org/10.1007/s10787-013-0169-5
[18]  Mori, N., Sato, H., Hayashibara, T., et al. (2003) Helicobacter pylori Induces Matrix Metalloproteinase-9 through Activation of Nuclear Factor Kappa B. Gastroenterology, 124, 983-992.
http://dx.doi.org/10.1053/gast.2003.50152
[19]  Cuadrado, A. and Nebreda, A.R. (2010) Mechanism and Function of p38 MAPK Signaling. Biochemical Journal, 429, 403-417.
http://dx.doi.org/10.1042/BJ20100323
[20]  Xu, P. and Derynck, R. (2010) Direct Activation of TACE-Mediated Ectodomain Shedding by p38 MAP Kinase Regulates EGF Receptor-Dependent Cell Proliferation. Molecular Cell, 37, 551-566.
http://dx.doi.org/10.1016/j.molcel.2010.01.034
[21]  Slomiany, B.L. and Slomiany, A. (2006) Leptin Modulates the Detrimental Effect of Porphyromonas gingivalis Lipopolysaccharide-Induced Cytosolic Phospholipase A2 Activation on Salivary Mucin Synthesis via ERK-Signal Transduction. Inflammopharmacology, 14, 250-255.
http://dx.doi.org/10.1007/s10787-006-1525-5
[22]  Kong, L. and Ge, B.X. (2008) MyD88-Independent Activation of a Novel Actin-Cdc42 /Rac Pathway Is Required for Toll-Like Receptor-Stimulated Phagocytosis. Cell Research, 18, 745-755.
http://dx.doi.org/10.1038/cr.2008.65
[23]  Yao, H.Y., Chen, L., Wang, J., et al. (2011) Inhibition of Rac Activity Alleviates Lipopolysaccharide-Induced Acute Pulmonary Injury in Mice. Biochimica et Biophysica Acta, 1810, 666-674.
http://dx.doi.org/10.1016/j.bbagen.2011.03.020
[24]  You, H.J., Woo, C.H., Choi, E.Y., et al. (2005) Roles of Rac and p38 Kinase in the Activation of Cytosolic Phospholipase A2 in Response to PMA. Biochemical Journal, 388, 527-535.
http://dx.doi.org/10.1042/BJ20041614
[25]  Brown, W.J., Chambers, K. and Doody, A. (2003) Phospholipase A2 (PLA2) Enzymes in Membrane Trafficking: Mediators of Membrane Shape and Function. Traffic, 4, 214-221.
http://dx.doi.org/10.1034/j.1600-0854.2003.00078.x
[26]  Evans, J.H., Gerber, S.H., Murray, D. and Leslie, C.C. (2004) The Calcium Binding Loops of the Cytosolic Phospholipase A2 C2 Domain Specifically Targeting to Golgi and ER in Live Cells. Molecular Biology of the Cell, 15, 371-383.
http://dx.doi.org/10.1091/mbc.E03-05-0338
[27]  Hanania, R., Sun, H.S., Xu, K., et al. (2012) Classically Activated Macrophages Use Stable Microtubules for Matrix Metalloproteinase-9 (MMP-9) Secretion. Journal of Biological Chemistry, 287, 8468-8483.
http://dx.doi.org/10.1074/jbc.M111.290676
[28]  Eiseler, T., Wille, C., Koehler, C., Illing, A. and Seufferlein, T. (2016) Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Gologi Network to Regulate Matrix Metalloproteinase Secretion. Journal of Biological Chemistry, 291, 462-477.
http://dx.doi.org/10.1074/jbc.M115.673582
[29]  Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gin-givalis-Induced GEF Dock180 Activation by Src/PKCδ- Dependent Phosphorylation Mediates PLCγ2 Amplification in Salivary Gland Acinar Cells: Effect of Ghrelin. Journal of Biosciences and Medicines, 3, 66-77.
http://dx.doi.org/10.4236/jbm.2015.37008
[30]  Slomiany, B.L. and Slomiany, A. (2011) Ghrelin-Induced cSrc Activation through Constitutive Nitric Oxide Synthase-Dependent S-Nitrosylation in Modulation of Salivary Gland Acinar Cell Inflammatory Responses to Porphyromonas gingivalis. American Journal of Molecular Biology, 2, 43-51.
http://dx.doi.org/10.4236/ajmb.2011.12006
[31]  Slomiany, B.L. and Slomiany, A. (2010) Ghrelin Protection Against Cytotoxic Effect of Ethanol on Rat Salivary Mucin Synthesis Involves Cytosolic Phospholipase A2 Activation through S-Nitrosylation. International Journal of Biomedical Sciences, 6, 37-44.
[32]  Beck, J., Garcia, R., Heiss, G., Vokonas, P.J. and Offenbacher, S. (1996) Periodontal Disease and Cardiovascular Disease. Journal of Periodontology, 67, 1123-1137.
http://dx.doi.org/10.1902/jop.1996.67.10s.1123
[33]  Murthy, S., Ryan, A., He, C., Mallapalli, R.K. and Carter, A.B. (2010) Rac1-Mediated Mitochondrial H2O2 Generation Regulates MMP-9 Gene Expression in Macrophages via Inhibition of SP-1 and AP-1. Journal of Biological Chemistry, 285, 25062-25073.
http://dx.doi.org/10.1074/jbc.M109.099655
[34]  Hirabayashi, T. and Shimizu, T. (2000) Localization and Regulation of Cytosolic Phospholipase A2. Biochimica et Biophysica Acta, 1488, 124-138.
http://dx.doi.org/10.1016/S1388-1981(00)00115-3
[35]  Coulon, L., Calzada, C., Moulin, P., Vericel, E. and Lagarde, M. (2003) Activation of p38 Mitogen-Activated Protein Kinase/Cytosolic Phospholipase A2 Cascade in Hydroperoxide-Stressed Platelets. Free Radical Biology and Medicine, 35, 615-625.
http://dx.doi.org/10.1016/S0891-5849(03)00386-1
[36]  Das, S., Rafter, J.D., Kim, K.P., Gygi, S.P. and Cho, W. (2003) Mechanism of Group IVA Cytosolic Phospholipase A2 Activation by Phosphorylation. Journal of Biological Chemistry, 278, 41431-41442.
http://dx.doi.org/10.1074/jbc.M304897200
[37]  Murakami, M. and Kudo, I. (2002) Phospholipase A2. Journal of Biochemistry, 131, 285-292.
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003101
[38]  Sapirstein, A. and Bonventre, J.V. (2000) Specific Physiological Roles of Cytosolic Phospholipase A2 as Defined by Gene Knockout. Biochimica et Biophysica Acta, 1488, 139-149.
http://dx.doi.org/10.1016/S1388-1981(00)00116-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133