全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Graphene  2016 

Graphene Flakes in Arc Plasma: Conditions for the Fast Single-Layer Growth

DOI: 10.4236/graphene.2016.52009, PP. 81-89

Keywords: Graphene Flakes, Arc Plasma, Growth, Few-Layer Graphene

Full-Text   Cite this paper   Add to My Lib

Abstract:

The results of systematic numerical studies of graphene flakes growth in low-temperature arc discharge plasmas are presented. Diffusion-based growth model was developed, verified using the previously published experiments, and used to investigate the principal effects of the process parameters such as plasma density, electron temperature, surface temperature and time of growth on the size and structure of the plasma-grown graphene flakes. It was demonstrated that the higher growth temperatures result in larger graphene flakes reaching 5 μm, and simultaneously, lead to much lower density of the carbon atoms adsorbed on the flake surface. The low density of the carbon adatoms reduces the probability of the additional graphene layer nucleation on surface of growing flake, thus eventually resulting in the synthesis of the most valuable single-layered graphenes.

References

[1]  Frank, I.W., Tanenbaum, D.M., van der Zande, A.M. and McEuen, P.L. (2007) Mechanical Properties of Suspended Graphene Sheets. Journal of Vacuum Science and Technology B, 25, 2558-2561. http://dx.doi.org/10.1116/1.2789446
[2]  Cohen-Tanugi, D. and Grossman, J.C. (2014) Mechanical Strength of Nanoporous Graphene as a Desalination Membrane. Nano Letters, 14, 6171-6178. http://dx.doi.org/10.1021/nl502399y
[3]  Peres, N.M.R., Guinea, F. and Castro Neto, A.H. (2006) Electronic Properties of Disordered Two Dimensional Carbon. Physical Review B, 73, Article ID: 125411.
http://dx.doi.org/10.1103/physrevb.73.125411
[4]  Dedkov, Y.S. and Fonin, M. (2010) Electronic and Magnetic Properties of the Graphene-Ferromagnet Interface. New Journal of Physics, 12, Article ID: 125004.
http://dx.doi.org/10.1088/1367-2630/12/12/125004
[5]  Wang, Z., Tang, C., Sachs, R., Barlas, Y. and Shi, J. (2015) Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect. Physical Review Letters, 114, Article ID: 016603. http://dx.doi.org/10.1103/physrevlett.114.016603
[6]  Levchenko, I., Keidar, M., Xu, S., Kersten, H. and Ostrikov, K. (2013) Low-Temperature Plasmas in Carbon Nanostructure Synthesis. Journal of Vacuum Science and Technology B, 31, Article ID: 050801.
[7]  Craighead, H.G. (2000) Nanoelectromechanical Systems. Science, 290, 1532-1536.
http://dx.doi.org/10.1126/science.290.5496.1532
[8]  Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G. and McEuen, P.L. (2007) Electromechanical Resonators from Graphene Sheets. Science, 315, 490-493. http://dx.doi.org/10.1126/science.1136836
[9]  Veen, J., Gomez, A., van der Zant, H. and Steele, G. (2013) Flexible Graphene Devices with an Embedded Back-Gate. Graphene, 2, 13-17. http://dx.doi.org/10.4236/graphene.2013.21003
[10]  Ekinci, K.L. and Roukes, M.L. (2005) Nanoelectromechanical Systems. Review if Scientific Instrument, 76, Article ID: 061101. http://dx.doi.org/10.1063/1.1927327
[11]  Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191. http://dx.doi.org/10.1038/nmat1849
[12]  Torres, L., Gomez Armas, L. and Carlos Seabra, A. (2014) Optimization of Micromechanical Cleavage Technique of Natural Graphite by Chemical Treatment. Graphene, 3, 1-5.
http://dx.doi.org/10.4236/graphene.2014.31001
[13]  Dahal, A. and Batzill, M. (2014) Graphene-Nickel Interfaces: A Review. Nanoscale, 6, 2548-2562. http://dx.doi.org/10.1039/c3nr05279f
[14]  Deokar, G., Avila, J., Razado-Colambo, I., Codron, J.-L., Boyaval, C., Galopin, E., et.al. (2015) Towards High Quality CVD Graphene Growth and Transfer. Carbon, 89, 82-92.
http://dx.doi.org/10.1016/j.carbon.2015.03.017
[15]  Levchenko, I., Ostrikov, K., Zheng, J., Li, X., Keidard, M. and Teo, K. (2016) Scalable Graphene Production: Perspectives and Challenges of Plasma Applications. Nanoscale, in Press.
http://dx.doi.org/10.1039/C5NR06537B
[16]  Vlassiouk, I., Polizos, G., Cooper, R., Ivanov, I., Keum, J.K., Paulauskas, F., Datskos, P. and Smirnov, S. (2015) Strong and Electrically Conductive Graphene-Based Composite Fibers and Laminates. ACS Applied Materials and Interfaces, 7, 10702-10709. http://dx.doi.org/10.1021/acsami.5b01367
[17]  Xu, S., Huang, S.Y., Levchenko, I., Zhou, H.P., Wei, D.Y., Xiao, S.Q., et al. (2011) Highly Efficient Silicon Nanoarray Solar Cells by a Single-Step Plasma-Based Process. Advanced Energy Materials, 1, 373-376. http://dx.doi.org/10.1002/aenm.201100085
[18]  Levchenko, I., Romanov, M. and Keidar, M. (2003) Investigation of a Steady-State Cylindrical Magnetron Discharge for Plasma Immersion Treatment. Journal of Applied Physics, 94, 1408-1413. http://dx.doi.org/10.1063/1.1590054
[19]  Park, H., Noh, S.H., Lee, J.H., Lee, W.J., Jaung, J.Y., Lee, S.G. and Han, T.H. (2015) Large Scale Synthesis and Light Emitting Fibers of Tailor-Made Graphene Quantum Dots. Scientific Reports, 5, Article ID: 14163. http://dx.doi.org/10.1038/srep14163
[20]  Volotskova, O., Levchenko, I., Shashurin, A., Raitses, Y., Ostrikov, K. and Keidar, M. (2010) Single-Step Synthesis and Magnetic Separation of Graphene and Carbon Nanotubes in Arc Discharge Plasmas. Nanoscale, 2, 2281-2285. http://dx.doi.org/10.1039/c0nr00416b
[21]  Keidar, M., Shashurin, A., Li, J., Volotskova, O., Kundrapu, M. and Zhuang, T. (2011) Arc Plasma Synthesis of Carbon Nanostructures: Where Is the Frontier? Journal of Physics D: Applied Physics, 44, Article ID: 174006.
[22]  Keidar, M., Levchenko, I., Arbel, T., Alexander, M., Waas, A.M. and Ostrikov, K. (2008) Magnetic-Field-Enhanced Synthesis of Single-Wall Carbon Nanotubes in Arc Discharge. Journal of Applied Physics, 103, Article ID: 094318. http://dx.doi.org/10.1063/1.2919712
[23]  Levchenko, I., Volotskova, O., Shashurin, A., Raitses, Y., Ostrikov, K. and Keidar, M. (2010) The Large-Scale Production of Graphene Flakes Using Magnetically-Enhanced Arc Discharge between Carbon Electrodes. Carbon, 48, 4570-4574. http://dx.doi.org/10.1016/j.carbon.2010.07.055
[24]  Levchenko, I., Ostrikov, K., Mariotti, D. and Svrcek, V. (2009) Self-Organized Carbon Connections between Catalyst Particles on a Silicon Surface Exposed to Atmospheric-Pressure Ar + CH4 Microplasmas. Carbon, 47, 2379-2390. http://dx.doi.org/10.1016/j.carbon.2009.04.031
[25]  Fang, X., Donahue, J., Shashurin, A. and Keidar, M. (2015) Plasma-Based Graphene Functionalization in Glow Discharge. Graphene, 4, 1-6. http://dx.doi.org/10.4236/graphene.2015.41001
[26]  Pop, E., Varshney, V. and Roy, A.K. (2012) Thermal Properties of Graphene: Fundamentals and Applications. MRS Bulletin, 37, 1273-1281. http://dx.doi.org/10.1557/mrs.2012.203
[27]  Keidar, M., Waas, A.M., Raitses, Y. and Waldorff, E. (2006) Modeling of the Anodic Arc Discharge and Conditions for Single-Wall Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 6, 1309-1314. http://dx.doi.org/10.1166/jnn.2006.159
[28]  Shashurin, A., Keidar, M. and Beilis, I.I. (2008) Voltage-Current Characteristics of an Anodic Arc Producing Carbon Nanotubes. Journal of Applied Physics, 104, Article ID: 063311.
http://dx.doi.org/10.1063/1.2986572
[29]  Fang, X., Shashurin, A. and Keidar, M. (2015) Role of Substrate Temperature at Graphene Synthesis in an Arc Discharge. Journal of Applied Physics, 118, Article ID: 103304.
[30]  Lee, Y.H., Kim, S.G. and Tománek, D. (1997) Catalytic Growth of Single-Wall Carbon Nanotubes. Physical Review Letter, 78, 2393-2396. http://dx.doi.org/10.1103/PhysRevLett.78.2393

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133