全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CVD Coating of Oxide Particles for the Production of Novel Particle-Reinforced Iron-Based Metal Matrix Composites

DOI: 10.4236/ojapps.2016.64026, PP. 260-269

Keywords: Chemical Vapor Deposition, Particle Coating, Metallization, Metal Matrix Composites, Reactive Wetting

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper focuses on surface metallization of oxide particles by means of titanium nitride (TiN) thin films for the production of highly wear-resistant metal matrix composites (MMC) on Fe-base for wear protection applications. These powder-metallurgically produced materials consist of a metallic matrix with embedded oxide hard-particles such as alumina or zirconia. The poor wettability of these oxides by iron-base melts and the resulting weak bonding between the components lead to porous materials and weak tribomechanical properties, thus limiting the material’s application range. To counteract such problems, this paper describes a processing route in which the oxide particles are pre-metallized by application of a thin TiN coating by means of chemical vapor deposition (CVD). This surface metallization should increase the wettability and bonding behavior between the ionically bonded particles and the iron-base alloy, which should improve the mechanical and tribological properties. Therefore, a CVD device for coating ceramic particles was constructed and is described in this paper. Furthermore, coatings deposited on the ceramic sub-strates were investigated by means of RBS, SEM and XRD. In addition, the feasibility of producing metal matrix composites (MMC) by admixing the TiN-coated oxide particles with a Fe-base alloy and their further densification by supersolidus liquid-phase sintering is demonstrated.

References

[1]  Berns, H. (1998) Hartlegierungen und Hartverbundwerkstoffe. Springer-Verlag, Berlin Heidelberg.
http://dx.doi.org/10.1007/978-3-642-51505-7
[2]  Pagounis, E. and Lindroos, V. (1998) Processing and Properties of Particulate Reinforced Steel Matrix Composites. Materials Science and Engineering: A, 246, 221-234.
http://dx.doi.org/10.1016/S0921-5093(97)00710-7
[3]  Eustathopoulos, N., Nicholas, M.G. and Drevet, B. (1999) Wettability at High Temperatures. Pergamon, Amsterdam, New York.
[4]  Nascimento, R.M., Martinelli, A.E. and Buschinelli, A. (2003) Review Article: Recent Advances in Metal-Ceramic Brazing. Cerámica, 49, 178-198. http://dx.doi.org/10.1590/s0366-69132003000400002
[5]  Lugscheider, E. and Tillmann, W. (1993) Methods for Brazing Ceramic and Metal-Ceramic Joints. Materials and Manufacturing Processes, 8, 219-238. http://dx.doi.org/10.1080/10426919308934826
[6]  Walker, C.A. and Hodges, V.C. (2008) Comparing Metal-Ceramic Brazing Methods: The Advantages and Disadvantages of the Various Methods for Joining Metals to Ceramics Are Outlined. Welding Journal, 43-50.
[7]  Winkelmann, R., Röttger, A. and Krause, C. (2013) Inductive Supported Coating. Heat Processing—International Magazine for Industrial Furnaces, Heat Treatment & Equipment, No. 1, 61-65.
[8]  Winkelmann, R., Smenda, J., Rank, T.W., Theisen, W., Röttger, A. and Weber, S. (2010) InduClad-verfahrens- und werkstofftechnische Grundlagen einer neuen Beschichtungstechnologie: Teil I: Verfahrenstechnische Grundlagen. Tagungsband GSI-SLV-Halle: 8. Fachtagung Verschleiβschutz von Bauteilen durch Auftragschweiβen; Halle (Saale).
[9]  Brauer, G. (1963) Handbook of Preparative Inorganic Chemistry. 2nd Edition, Academic Press Inc., New York.
[10]  Pierson, H.O. (1999) Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications. 2nd Edition, Noyes Publications, New Jersey.
[11]  Brust, S., Röttger, A. and Theisen, W. (2015) New Wear-Resistant Materials for Mining Applications. Proceedings of the 3rd International Conference on Stone and Concrete Machining (ICSCM), 3, 297-306.
[12]  Kafizas, A., Carmalt, C.J. and Parkin, I.P. (2013) CVD and Precursor Chemistry of Transition Metal Nitrides. Coordination Chemistry Reviews, 257, 2073-2119. http://dx.doi.org/10.1016/j.ccr.2012.12.004
[13]  Jouanny-Tresy, C., Vardavoulias, M. and Jeandin, M. (1995) Using Coated Ceramic Particles to Increase Wear Resistance in High-Speed Steels. JOM: Journal of the Minerals, Metals, and Materials Society, 47, 26-30.
[14]  Vahlas, C., Caussat, B., Serp, P. and Angelopoulos, G.N. (2006) Principles and Applications of CVD Powder Technology. Materials Science and Engineering: R: Reports, 53, 1-72.
http://dx.doi.org/10.1016/j.mser.2006.05.001
[15]  Mayer, M. (1997) SIMNRA User’s Guide. Report IPP 9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany.
[16]  Russell, W.C. and Padmanabhan, K.R. (1994) Modification of Al2O3-TiN Interface Chemistry to Improve Adhesion in CVD Coatings. Surface and Coatings Technology, 68-69, 221-228.
http://dx.doi.org/10.1016/0257-8972(94)90164-3
[17]  Barin, I. (1993) Thermochemical Data of Pure Substances. 2nd Edition, VCH Verlagsgesellschaft, Weinheim, Basel.
[18]  Rouml;ttger, A., Weber, S. and Theisen, W. (2012) Supersolidus Liquid-Phase Sintering of Ultrahigh-Boron High-Carbon Steels for Wear-Protection Applications. Materials Science and Engineering: A, 532, 511-521.
[19]  Weber, S. and Theisen, W. (2007) Sintering of High Wear Resistant Metal Matrix Composites. Advanced Engineering Materials, 9, 165-170. http://dx.doi.org/10.1002/adem.200600257
[20]  Chen, K. and Kamran, S. (2013) Bonding Characteristics of TiC and TiN. Modeling and Numerical Simulation of Material Science, 3, 7-11. http://dx.doi.org/10.4236/mnsms.2013.31002
[21]  Riedel, R. (2000) Handbook of Ceramic Hard Materials. Wiley-VCH, Weinheim.
http://dx.doi.org/10.1002/9783527618217
[22]  Howe, J.M. (1993) Bonding, Structure, and Properties of Metal/Ceramic Interfaces: Part 1 Chemical Bonding, Chemical Reaction, and Interfacial Structure. International Materials Reviews, 38, 223-256.
http://dx.doi.org/10.1179/imr.1993.38.5.233
[23]  Howe, J.M. (1993) Bonding, Structure, and Properties of Metal/Ceramic Interfaces: Part 2 Interface Fracture Behaviour and Property Measurement. International Materials Reviews, 38, 257-271.
http://dx.doi.org/10.1179/imr.1993.38.5.257

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133