全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Global Stability in Dynamical Systems with Multiple Feedback Mechanisms

DOI: 10.4236/apm.2016.65027, PP. 393-407

Keywords: Odes, Multiple Feedbacks, Stability, Global Stability, Attracting Trapping Region, Nonlinear Dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

A class of n-dimensional ODEs with up to n feedbacks from the n’th variable is analysed. The feedbacks are represented by non-specific, bounded, non-negative C1 functions. The main result is the formulation and proof of an easily applicable criterion for existence of a globally stable fixed point of the system. The proof relies on the contraction mapping theorem. Applications of this type of systems are numerous in biology, e.g., models of the hypothalamic-pituitary-adrenal axis and testosterone secretion. Some results important for modelling are: 1) Existence of an attractive trapping region. This is a bounded set with non-negative elements where solutions cannot escape. All solutions are shown to converge to a “minimal” trapping region. 2) At least one fixed point exists. 3) Sufficient criteria for a unique fixed point are formulated. One case where this is fulfilled is when the feedbacks are negative.

References

[1]  Savic, D. and Jelic, S. (2005) A Mathematical Model of the Hypothalamo-Pituitary-Adrenocortical System and Its Stability Analysis. Chaos, Solitons & Fractals, 26, 427-436.
[2]  Savic, D., Jelic, S. and Buric, N. (2006) Stability of a General Delay Differential Model of the Hypothalamo-Pituitary-Adrenocortical System. International Journal of Bifurcation and Chaos, 16, 3079-3085.
http://dx.doi.org/10.1142/S0218127406016665
[3]  Vinther, F., Andersen, M. and Ottesen, J.T. (2010) The Minimal Model of the Hypothalamic-Pituitary-Adrenal Axis. Journal of Mathematical Biology, 63, 663-690.
http://dx.doi.org/10.1007/s00285-010-0384-2
[4]  Andersen, M. and Vinther, F. (2010) Mathematical Modeling of the Hypothalamic-Pituitary-Adrenal Axis. IMFUFA tekst 469, Roskilde University, NSM.
[5]  Andersen, M., Vinther, F. and Ottesen, J.T. (2013) Mathematical Modeling of the Hypothalamic-Pituitary-Adrenal gland (Hpa) Axis, Including Hippocampal Mechanisms. Mathematical Biosciences, 246, 122-138.
http://dx.doi.org/10.1016/j.mbs.2013.08.010
[6]  Haddad, W.M., Chellaboina, V. and Hui, Q. (2010) Nonnegative and Compartmental Dynamical Systems. Princeton University Press, Princeton.
http://dx.doi.org/10.1515/9781400832248
[7]  Griffith, J.S. (1968) Mathematics of Cellular Control Processes I. Negative Feedback to One Gene. Journal of Theoretical Biology, 20, 202-208.
http://dx.doi.org/10.1016/0022-5193(68)90189-6
[8]  Tyson, J.J. and Othmer, H.G. (1978) The Dynamics of Feedback Control Circuits in Biochemical Pathways. Progress in Theoretical Biology, 5, 1-62.
http://dx.doi.org/10.1016/B978-0-12-543105-7.50008-7
[9]  Tyson, J.J. (1983) Periodic Enzyme Synthesis and Oscillatory Repression: Why Is the Period of Oscillation Close to the Cell Cycle Time. Journal of Theoretical Biology, 103, 313-328.
http://dx.doi.org/10.1016/0022-5193(83)90031-0
[10]  Bingzhenga, L., Zhenye, Z. and Liansong, C. (1990) A Mathematical Model of the Regulation System of the Secretion of Glucocorticoids. Journal of Biological Physics, 17, 221-233.
http://dx.doi.org/10.1007/BF00386598
[11]  Hosseinichimeh, N., Rahmandad, H. and Wittenborn, A. (2015) Modeling the Hypothalamus-Pituitary-Adrenal Axis: A Review and Extension. Mathematical Biosciences, 268, 52-65.
http://dx.doi.org/10.1016/j.mbs.2015.08.004
[12]  Murray, J. (2002) Mathematical Biology: I. An Introduction. Third Edition, Springer, New York.
[13]  Smith, W.R. (1980) Hypothalamic Regulation of Pituitary Secretion of Luteinizing Hormone II. Feedback Control of Gonadotropin Secretion. Bulletin of Mathematical Biology, 42, 57-78.
[14]  Clarke, I. and Cummings, J. (1984) Direct Pituitary Effects of Estrogen and Progesterone on Gonadotropin Secretion in the Ovariectomized Ewe. Neuroendocrinology, 39, 267-274.
http://dx.doi.org/10.1159/000123990
[15]  Harris-Clark, P., Schlosser, P. and Selgrade, J. (2003) Multiple Stable Solutions in a Model for Hormonal Control of Menstrual Cycle. Bulletin of Mathematical Biology, 65, 157-173.
http://dx.doi.org/10.1006/bulm.2002.0326
[16]  Karsch, F., Dierschke, D., Weick, R., Yamaji, T., Hotchkiss, J. and Knobil, E. (1973) Positive and Negative Feedback Control by Estrogen of Luteinizing Hormone Secretion in the Rhesus Monkey. Endocrinology, 92, 799-804.
http://dx.doi.org/10.1210/endo-92-3-799
[17]  Chitour, Y., Grognard, F. and Bastin, G. (2003) Lecture Notes in Control and Information Sciences: Stability Analysis of a Metabolic Model with Sequential Feedback Inhibition. Springer Berlin/Heidelberg.
[18]  Conrad, M., Hubold, C., Fischer, B. and Peters, A. (2009) Modeling the Hypothalamus-Pituitary-Adrenal System: Homeostasis by Interacting Positive and Negative Feedback. Journal of Biological Physics, 35, 149-162.
http://dx.doi.org/10.1007/s10867-009-9134-3
[19]  Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos. Perseus Books Publishing, LLC, New York.
[20]  Hastings, S., Tyson, J. and Webster, D. (1977) Existence of Periodic Solutions for Negative Feedback Cellular Control Systems. Journal of Differential Equations, 25, 39-64.
http://dx.doi.org/10.1016/0022-0396(77)90179-6
[21]  Fall, C., Marland, E., Wagner, J. and Tyson, J. (2002) Computational Cell Biology. Springer-Verlag, New York.
[22]  Enciso, G.A. (2007) A Dichotomy for a Class of Cyclic Delay Systems. Mathematical Biosciences, 208, 63-75.
http://dx.doi.org/10.1016/j.mbs.2006.09.022
[23]  Sastry, S. (1999) Nonlinear Systems; Analysis, Stability and Control; Interdisciplinary Applied Mathematics. Springer-Verlag, New York.
[24]  Istratescu, V.I. (1981) Fixed Point Theory. Second Edition, D. Reidel Publishing Company, Dordrecht.
http://dx.doi.org/10.1007/978-94-009-8177-5
[25]  Monk, N.A. (2003) Oscillatory Expression of Hes1, p53, and NF-κB Driven by Transcriptional Time Delays. Current Biology, 13, 1409-1413.
http://dx.doi.org/10.1016/S0960-9822(03)00494-9
[26]  Jensen, M.H., Sneppen, K. and Tiana, G. (2003) Correspondence Sustained Oscillations and Time Delays in Gene Expression of Protein Hes1. FEBS Letters, 541, 176-177.
http://dx.doi.org/10.1016/S0014-5793(03)00279-5
[27]  Enciso, G. and Sontag, E.D. (2004) On the Stability of a Model of Testosterone Dynamics. Journal of Mathematical Biology, 49, 627-634.
http://dx.doi.org/10.1007/s00285-004-0291-5
[28]  Momiji, H. and Monk, N.A.M. (2008) Dissecting the Dynamics of the Hes1 Genetic Oscillator. Journal of Theoretical Biology, 254, 784-798.
http://dx.doi.org/10.1016/j.jtbi.2008.07.013
[29]  Lewis, J. (2003) Autoinhibition with Transcriptional Delay. Current Biology, 13, 1398-1408.
http://dx.doi.org/10.1016/S0960-9822(03)00534-7
[30]  Ruan, S. and Wei, J. (2001) On the Zeros of a Third Degree Exponential Polynomial with Applications to a Delayed Model for the Control of Testosterone Secretion. IMA Journal of Mathematics Applied in Medicine and Biology, 18, 41-52.
http://dx.doi.org/10.1093/imammb/18.1.41
[31]  Enciso, G.A. and Sontag, E.D. (2006) Global Attractivity, I/O Monotone Small-Gain Theorems, and Biological Delay Systems. Discrete and Continuous Dynamical Systems, 14, 549-578.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133