A class of n-dimensional ODEs with up to n feedbacks from the n’th variable is analysed. The feedbacks
are represented by non-specific, bounded, non-negative C1 functions. The main result is the formulation and
proof of an easily applicable criterion for existence of a globally stable fixed point of the
system. The proof relies on the contraction mapping theorem. Applications of
this type of systems are numerous in biology, e.g., models of the hypothalamic-pituitary-adrenal
axis and testosterone secretion. Some results important for modelling are: 1)
Existence of an attractive trapping region. This is a bounded set with non-negative
elements where solutions cannot escape. All solutions are shown to converge to
a “minimal” trapping region. 2) At least one fixed point exists. 3) Sufficient criteria
for a unique fixed point are formulated. One case where this is fulfilled is
when the feedbacks are negative.
References
[1]
Savic, D. and Jelic, S. (2005) A Mathematical Model of the Hypothalamo-Pituitary-Adrenocortical System and Its Stability Analysis. Chaos, Solitons & Fractals, 26, 427-436.
[2]
Savic, D., Jelic, S. and Buric, N. (2006) Stability of a General Delay Differential Model of the Hypothalamo-Pituitary-Adrenocortical System. International Journal of Bifurcation and Chaos, 16, 3079-3085. http://dx.doi.org/10.1142/S0218127406016665
[3]
Vinther, F., Andersen, M. and Ottesen, J.T. (2010) The Minimal Model of the Hypothalamic-Pituitary-Adrenal Axis. Journal of Mathematical Biology, 63, 663-690. http://dx.doi.org/10.1007/s00285-010-0384-2
[4]
Andersen, M. and Vinther, F. (2010) Mathematical Modeling of the Hypothalamic-Pituitary-Adrenal Axis. IMFUFA tekst 469, Roskilde University, NSM.
[5]
Andersen, M., Vinther, F. and Ottesen, J.T. (2013) Mathematical Modeling of the Hypothalamic-Pituitary-Adrenal gland (Hpa) Axis, Including Hippocampal Mechanisms. Mathematical Biosciences, 246, 122-138. http://dx.doi.org/10.1016/j.mbs.2013.08.010
[6]
Haddad, W.M., Chellaboina, V. and Hui, Q. (2010) Nonnegative and Compartmental Dynamical Systems. Princeton University Press, Princeton. http://dx.doi.org/10.1515/9781400832248
[7]
Griffith, J.S. (1968) Mathematics of Cellular Control Processes I. Negative Feedback to One Gene. Journal of Theoretical Biology, 20, 202-208. http://dx.doi.org/10.1016/0022-5193(68)90189-6
[8]
Tyson, J.J. and Othmer, H.G. (1978) The Dynamics of Feedback Control Circuits in Biochemical Pathways. Progress in Theoretical Biology, 5, 1-62. http://dx.doi.org/10.1016/B978-0-12-543105-7.50008-7
[9]
Tyson, J.J. (1983) Periodic Enzyme Synthesis and Oscillatory Repression: Why Is the Period of Oscillation Close to the Cell Cycle Time. Journal of Theoretical Biology, 103, 313-328. http://dx.doi.org/10.1016/0022-5193(83)90031-0
[10]
Bingzhenga, L., Zhenye, Z. and Liansong, C. (1990) A Mathematical Model of the Regulation System of the Secretion of Glucocorticoids. Journal of Biological Physics, 17, 221-233. http://dx.doi.org/10.1007/BF00386598
[11]
Hosseinichimeh, N., Rahmandad, H. and Wittenborn, A. (2015) Modeling the Hypothalamus-Pituitary-Adrenal Axis: A Review and Extension. Mathematical Biosciences, 268, 52-65. http://dx.doi.org/10.1016/j.mbs.2015.08.004
[12]
Murray, J. (2002) Mathematical Biology: I. An Introduction. Third Edition, Springer, New York.
[13]
Smith, W.R. (1980) Hypothalamic Regulation of Pituitary Secretion of Luteinizing Hormone II. Feedback Control of Gonadotropin Secretion. Bulletin of Mathematical Biology, 42, 57-78.
[14]
Clarke, I. and Cummings, J. (1984) Direct Pituitary Effects of Estrogen and Progesterone on Gonadotropin Secretion in the Ovariectomized Ewe. Neuroendocrinology, 39, 267-274. http://dx.doi.org/10.1159/000123990
[15]
Harris-Clark, P., Schlosser, P. and Selgrade, J. (2003) Multiple Stable Solutions in a Model for Hormonal Control of Menstrual Cycle. Bulletin of Mathematical Biology, 65, 157-173. http://dx.doi.org/10.1006/bulm.2002.0326
[16]
Karsch, F., Dierschke, D., Weick, R., Yamaji, T., Hotchkiss, J. and Knobil, E. (1973) Positive and Negative Feedback Control by Estrogen of Luteinizing Hormone Secretion in the Rhesus Monkey. Endocrinology, 92, 799-804. http://dx.doi.org/10.1210/endo-92-3-799
[17]
Chitour, Y., Grognard, F. and Bastin, G. (2003) Lecture Notes in Control and Information Sciences: Stability Analysis of a Metabolic Model with Sequential Feedback Inhibition. Springer Berlin/Heidelberg.
[18]
Conrad, M., Hubold, C., Fischer, B. and Peters, A. (2009) Modeling the Hypothalamus-Pituitary-Adrenal System: Homeostasis by Interacting Positive and Negative Feedback. Journal of Biological Physics, 35, 149-162. http://dx.doi.org/10.1007/s10867-009-9134-3
[19]
Strogatz, S.H. (1994) Nonlinear Dynamics and Chaos. Perseus Books Publishing, LLC, New York.
[20]
Hastings, S., Tyson, J. and Webster, D. (1977) Existence of Periodic Solutions for Negative Feedback Cellular Control Systems. Journal of Differential Equations, 25, 39-64. http://dx.doi.org/10.1016/0022-0396(77)90179-6
[21]
Fall, C., Marland, E., Wagner, J. and Tyson, J. (2002) Computational Cell Biology. Springer-Verlag, New York.
[22]
Enciso, G.A. (2007) A Dichotomy for a Class of Cyclic Delay Systems. Mathematical Biosciences, 208, 63-75. http://dx.doi.org/10.1016/j.mbs.2006.09.022
[23]
Sastry, S. (1999) Nonlinear Systems; Analysis, Stability and Control; Interdisciplinary Applied Mathematics. Springer-Verlag, New York.
[24]
Istratescu, V.I. (1981) Fixed Point Theory. Second Edition, D. Reidel Publishing Company, Dordrecht. http://dx.doi.org/10.1007/978-94-009-8177-5
[25]
Monk, N.A. (2003) Oscillatory Expression of Hes1, p53, and NF-κB Driven by Transcriptional Time Delays. Current Biology, 13, 1409-1413. http://dx.doi.org/10.1016/S0960-9822(03)00494-9
[26]
Jensen, M.H., Sneppen, K. and Tiana, G. (2003) Correspondence Sustained Oscillations and Time Delays in Gene Expression of Protein Hes1. FEBS Letters, 541, 176-177. http://dx.doi.org/10.1016/S0014-5793(03)00279-5
[27]
Enciso, G. and Sontag, E.D. (2004) On the Stability of a Model of Testosterone Dynamics. Journal of Mathematical Biology, 49, 627-634. http://dx.doi.org/10.1007/s00285-004-0291-5
[28]
Momiji, H. and Monk, N.A.M. (2008) Dissecting the Dynamics of the Hes1 Genetic Oscillator. Journal of Theoretical Biology, 254, 784-798. http://dx.doi.org/10.1016/j.jtbi.2008.07.013
[29]
Lewis, J. (2003) Autoinhibition with Transcriptional Delay. Current Biology, 13, 1398-1408. http://dx.doi.org/10.1016/S0960-9822(03)00534-7
[30]
Ruan, S. and Wei, J. (2001) On the Zeros of a Third Degree Exponential Polynomial with Applications to a Delayed Model for the Control of Testosterone Secretion. IMA Journal of Mathematics Applied in Medicine and Biology, 18, 41-52. http://dx.doi.org/10.1093/imammb/18.1.41
[31]
Enciso, G.A. and Sontag, E.D. (2006) Global Attractivity, I/O Monotone Small-Gain Theorems, and Biological Delay Systems. Discrete and Continuous Dynamical Systems, 14, 549-578.