The Drosophila testis is a well-established system for studying stem cell self-renewal and competition. In this tissue, the niche supports two stem cell populations, germ line stem cells (GSCs), which give rise to sperm, and somatic stem cells called cyst stem cells (CySCs), which support GSCs and their descendants. It has been established that CySCs compete with each other and with GSCs for niche access, and mutations have been identified that confer increased competitiveness to CySCs, resulting in the mutant stem cell and its descendants outcompeting wild type resident stem cells. Socs36E, which encodes a negative feedback inhibitor of the JAK/STAT pathway, was the first identified regulator of niche competition. The competitive behavior of Socs36E mutant CySCs was attributed to increased JAK/STAT signaling. Here we show that competitive behavior of Socs36E mutant CySCs is due in large part to unbridled Mitogen-Activated Protein Kinase (MAPK) signaling. In Socs36E mutant clones, MAPK activity is elevated. Furthermore, we find that clonal upregulation of MAPK in CySCs leads to their outcompetition of wild type CySCs and of GSCs, recapitulating the Socs36E mutant phenotype. Indeed, when MAPK activity is removed from Socs36E mutant clones, they lose their competitiveness but maintain self-renewal, presumably due to increased JAK/STAT signaling in these cells. Consistently, loss of JAK/STAT activity in Socs36E mutant clones severely impairs their self-renewal. Thus, our results enable the genetic separation of two essential processes that occur in stem cells. While some niche signals specify the intrinsic property of self-renewal, which is absolutely required in all stem cells for niche residence, additional signals control the ability of stem cells to compete with their neighbors. Socs36E is node through which these processes are linked, demonstrating that negative feedback inhibition integrates multiple aspects of stem cell behavior.
References
[1]
Losick VP, Morris LX, Fox DT, Spradling A. Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell. 2011;21(1):159–71. pmid:21763616. doi: 10.1016/j.devcel.2011.06.018.
[2]
Alexander WS, Hilton DJ. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annual review of immunology. 2004;22:503–29.
[3]
Shilo BZ. The regulation and functions of MAPK pathways in Drosophila. Methods. 2014;68(1):151–9. doi: 10.1016/j.ymeth.2014.01.020 pmid:24530508.
[4]
Peterson AJ, O'Connor MB. Strategies for exploring TGF-beta signaling in Drosophila. Methods. 2014;68(1):183–93. doi: 10.1016/j.ymeth.2014.03.016
[5]
Kazi JU, Kabir NN, Flores-Morales A, Ronnstrand L. SOCS proteins in regulation of receptor tyrosine kinase signaling. Cellular and molecular life sciences: CMLS. 2014;71(17):3297–310. doi: 10.1007/s00018-014-1619-y pmid:24705897.
[6]
de Cuevas M, Matunis EL. The stem cell niche: lessons from the Drosophila testis. Development (Cambridge, England). 2011;138(14):2861–9. pmid:21693509. doi: 10.1242/dev.056242
[7]
Tulina N, Matunis E. Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science (New York, NY). 2001;294(5551):2546–9. pmid:11752575. doi: 10.1126/science.1066700
[8]
Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT. Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science (New York, NY). 2001;294(5551):2542–5. pmid:11752574. doi: 10.1126/science.1066707
[9]
Forbes AJ, Lin H, Ingham PW, Spradling AC. hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development (Cambridge, England). 1996;122(4):1125–35. Epub 1996/04/01. pmid:8620839.
[10]
Kawase E, Wong MD, Ding BC, Xie T. Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis. Development (Cambridge, England). 2004;131(6):1365–75. pmid:14973292. doi: 10.1242/dev.01025
[11]
Shivdasani AA, Ingham PW. Regulation of stem cell maintenance and transit amplifying cell proliferation by tgf-beta signaling in Drosophila spermatogenesis. Curr Biol. 2003;13(23):2065–72. pmid:14653996. doi: 10.1016/j.cub.2003.10.063
[12]
Leatherman JL, Dinardo S. Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nature cell biology. 2010;12(8):806–11. doi: 10.1038/ncb2086
[13]
Leatherman JL, Dinardo S. Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell stem cell. 2008;3(1):44–54. pmid:18593558. doi: 10.1016/j.stem.2008.05.001.
[14]
Michel M, Kupinski AP, Raabe I, Bokel C. Hh signalling is essential for somatic stem cell maintenance in the Drosophila testis niche. Development (Cambridge, England). 2012;139(15):2663–9. Epub 2012/06/30. doi: 10.1242/dev.075242 pmid:22745310.
[15]
Amoyel M, Sanny J, Burel M, Bach EA. Hedgehog is required for CySC self-renewal but does not contribute to the GSC niche in the Drosophila testis. Development (Cambridge, England). 2013;140(1):56–65. doi: 10.1242/dev.086413 pmid:23175633; PubMed Central PMCID: PMC3513992.
[16]
Issigonis M, Tulina N, de Cuevas M, Brawley C, Sandler L, Matunis E. JAK-STAT signal inhibition regulates competition in the Drosophila testis stem cell niche. Science (New York, NY). 2009;326(5949):153–6. pmid:19797664. doi: 10.1126/science.1176817
[17]
Singh SR, Zheng Z, Wang H, Oh SW, Chen X, Hou SX. Competitiveness for the niche and mutual dependence of the germline and somatic stem cells in the Drosophila testis are regulated by the JAK/STAT signaling. Journal of cellular physiology. 2010;223(2):500–10. pmid:20143337. doi: 10.1002/jcp.22073.
[18]
Amoyel M, Simons BD, Bach EA. Neutral competition of stem cells is skewed by proliferative changes downstream of Hh and Hpo. The EMBO journal. 2014;33(20):2295–313. doi: 10.15252/embj.201387500 pmid:25092766; PubMed Central PMCID: PMC4253521.
[19]
Stine RR, Greenspan LJ, Ramachandran KV, Matunis EL. Coordinate regulation of stem cell competition by Slit-Robo and JAK-STAT signaling in the Drosophila testis. PLoS Genet. 2014;10(11):e1004713. doi: 10.1371/journal.pgen.1004713 pmid:25375180; PubMed Central PMCID: PMC4222695.
[20]
Herranz H, Hong X, Hung NT, Voorhoeve PM, Cohen SM. Oncogenic cooperation between SOCS family proteins and EGFR identified using a Drosophila epithelial transformation model. Genes & development. 2012;26(14):1602–11. Epub 2012/07/18. doi: 10.1101/gad.192021.112 pmid:22802531; PubMed Central PMCID: PMC3404387.
[21]
Almudi I, Stocker H, Hafen E, Corominas M, Serras F. SOCS36E specifically interferes with Sevenless signaling during Drosophila eye development. Developmental biology. 2009;326(1):212–23. doi: 10.1016/j.ydbio.2008.11.014 pmid:19083999.
[22]
Callus BA, Mathey-Prevot B. SOCS36E, a novel Drosophila SOCS protein, suppresses JAK/STAT and EGF-R signalling in the imaginal wing disc. Oncogene. 2002;21(31):4812–21. doi: 10.1038/sj.onc.1205618 pmid:12101419.
[23]
Stec W, Vidal O, Zeidler MP. Drosophila SOCS36E negatively regulates JAK/STAT pathway signaling via two separable mechanisms. Molecular biology of the cell. 2013;24(18):3000–9. doi: 10.1091/mbc.E13-05-0275 pmid:23885117; PubMed Central PMCID: PMC3771960.
[24]
Rawlings JS, Rennebeck G, Harrison SM, Xi R, Harrison DA. Two Drosophila suppressors of cytokine signaling (SOCS) differentially regulate JAK and EGFR pathway activities. BMC Cell Biol. 2004;5(1):38.
[25]
Baeg GH, Zhou R, Perrimon N. Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila. Genes & development. 2005;19(16):1861–70. doi: 10.1101/gad.1320705 pmid:16055650; PubMed Central PMCID: PMC1186186.
[26]
Schulz C, Wood CG, Jones DL, Tazuke SI, Fuller MT. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development (Cambridge, England). 2002;129(19):4523–34. pmid:12223409. doi: 10.3410/f.1006866.121157
[27]
Kiger AA, White-Cooper H, Fuller MT. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature. 2000;407(6805):750–4. pmid:11048722.
[28]
Gabay L, Seger R, Shilo BZ. In situ activation pattern of Drosophila EGF receptor pathway during development. Science (New York, NY). 1997;277(5329):1103–6. pmid:9262480. doi: 10.1126/science.277.5329.1103
[29]
Lee T, Luo L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 1999;22(3):451–61. pmid:10197526. doi: 10.1016/s0896-6273(00)80701-1
[30]
Tran J, Brenner TJ, DiNardo S. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature. 2000;407(6805):754–7. pmid:11048723. doi: 10.1038/35037613
[31]
Sarkar A, Parikh N, Hearn SA, Fuller MT, Tazuke SI, Schulz C. Antagonistic roles of Rac and Rho in organizing the germ cell microenvironment. Curr Biol. 2007;17(14):1253–8. pmid:17629483. doi: 10.1016/j.cub.2007.06.048
[32]
Chen H, Chen X, Zheng Y. The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling. Cell stem cell. 2013;13(1):73–86. doi: 10.1016/j.stem.2013.05.003 pmid:23827710; PubMed Central PMCID: PMCPMC3703100.
[33]
Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA. Coordination of growth and cell division in the Drosophila wing. Cell. 1998;93(7):1183–93. pmid:9657151. doi: 10.1016/s0092-8674(00)81462-2
[34]
Flaherty MS, Salis P, Evans CJ, Ekas LA, Marouf A, Zavadil J, et al. chinmo is a functional effector of the JAK/STAT pathway that regulates eye development, tumor formation, and stem cell self-renewal in Drosophila. Dev Cell. 2010;18(4):556–68. doi: 10.1016/j.devcel.2010.02.006 pmid:20412771; PubMed Central PMCID: PMC2859208.
[35]
Ma Q, Wawersik M, Matunis EL. The Jak-STAT Target Chinmo Prevents Sex Transformation of Adult Stem Cells in the Drosophila Testis Niche. Dev Cell. 2014;31(4):474–86. doi: 10.1016/j.devcel.2014.10.004 pmid:25453558; PubMed Central PMCID: PMC4254588.
[36]
Brown S, Hu N, Hombria JC. Identification of the first invertebrate interleukin JAK/STAT receptor, the Drosophila gene domeless. Curr Biol. 2001;11(21):1700–5. pmid:11696329. doi: 10.1016/s0960-9822(01)00524-3
[37]
Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell. 2011;145(6):851–62. pmid:21663791. doi: 10.1016/j.cell.2011.05.033.
[38]
Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science (New York, NY). 2013;342(6161):995–8. doi: 10.1126/science.1243148 pmid:24264992.
[39]
Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO reports. 2014;15(1):62–9. doi: 10.1002/embr.201337799 pmid:24355609; PubMed Central PMCID: PMC3983678.
[40]
Brawley C, Matunis E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science (New York, NY). 2004;304(5675):1331–4. doi: 10.1126/science.1097676 pmid:15143218.
[41]
Lenhart KF, DiNardo S. Somatic cell encystment promotes abscission in germline stem cells following a regulated block in cytokinesis. Dev Cell. 2015;34(2):192–205. doi: 10.1016/j.devcel.2015.05.003 pmid:26143993; PubMed Central PMCID: PMCPMC4519359.
[42]
Queenan AM, Ghabrial A, Schupbach T. Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development (Cambridge, England). 1997;124(19):3871–80. pmid:9367443.
[43]
Xu T, Rubin GM. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development (Cambridge, England). 1993;117(4):1223–37. pmid:8404527.
[44]
Hudson AG, Parrott BB, Qian Y, Schulz C. A temporal signature of epidermal growth factor signaling regulates the differentiation of germline cells in testes of Drosophila melanogaster. PloS one. 2013;8(8):e70678. doi: 10.1371/journal.pone.0070678 pmid:23940622; PubMed Central PMCID: PMCPMC3734272.