全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis

DOI: 10.1371/journal.pgen.1005814

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Core Binding Factor (CBF) protein RUNX1 is a master regulator of definitive hematopoiesis, crucial for hematopoietic stem cell (HSC) emergence during ontogeny. RUNX1 also plays vital roles in adult mice, in regulating the correct specification of numerous blood lineages. Akin to the other mammalian Runx genes, Runx1 has two promoters P1 (distal) and P2 (proximal) which generate distinct protein isoforms. The activities and specific relevance of these two promoters in adult hematopoiesis remain to be fully elucidated. Utilizing a dual reporter mouse model we demonstrate that the distal P1 promoter is broadly active in adult hematopoietic stem and progenitor cell (HSPC) populations. By contrast the activity of the proximal P2 promoter is more restricted and its upregulation, in both the immature Lineage- Sca1high cKithigh (LSK) and bipotential Pre-Megakaryocytic/Erythroid Progenitor (PreMegE) populations, coincides with a loss of erythroid (Ery) specification. Accordingly the PreMegE population can be prospectively separated into “pro-erythroid” and “pro-megakaryocyte” populations based on Runx1 P2 activity. Comparative gene expression analyses between Runx1 P2+ and P2- populations indicated that levels of CD34 expression could substitute for P2 activity to distinguish these two cell populations in wild type (WT) bone marrow (BM). Prospective isolation of these two populations will enable the further investigation of molecular mechanisms involved in megakaryocytic/erythroid (Mk/Ery) cell fate decisions. Having characterized the extensive activity of P1, we utilized a P1-GFP homozygous mouse model to analyze the impact of the complete absence of Runx1 P1 expression in adult mice and observed strong defects in the T cell lineage. Finally, we investigated how the leukemic fusion protein AML1-ETO9a might influence Runx1 promoter usage. Short-term AML1-ETO9a induction in BM resulted in preferential P2 upregulation, suggesting its expression may be important to establish a pre-leukemic environment.

References

[1]  Durst KL, Hiebert SW (2004) Role of RUNX family members in transcriptional repression and gene silencing. Oncogene 23: 4220–4224. pmid:15156176 doi: 10.1038/sj.onc.1207122
[2]  Yamagata T, Maki K, Mitani K (2005) Runx1/AML1 in normal and abnormal hematopoiesis. Int J Hematol 82: 1–8. pmid:16105753 doi: 10.1532/ijh97.05075
[3]  Lacaud G, Gore L, Kennedy M, Kouskoff V, Kingsley P, et al. (2002) Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 100: 458–466. pmid:12091336 doi: 10.1182/blood-2001-12-0321
[4]  Lorsbach RB, Moore J, Ang SO, Sun W, Lenny N, et al. (2004) Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 103: 2522–2529. pmid:14630789 doi: 10.1182/blood-2003-07-2439
[5]  North TE, Stacy T, Matheny CJ, Speck NA, de Bruijn MF (2004) Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. Stem Cells 22: 158–168. pmid:14990855 doi: 10.1634/stemcells.22-2-158
[6]  Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457: 887–891. doi: 10.1038/nature07619. pmid:19129762
[7]  Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, et al. (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457: 892–895. doi: 10.1038/nature07679. pmid:19182774
[8]  Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330. pmid:8565077 doi: 10.1016/s0092-8674(00)80986-1
[9]  Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, et al. (1996) Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci U S A 93: 3444–3449. pmid:8622955 doi: 10.1073/pnas.93.8.3444
[10]  Lancrin C, Mazan M, Stefanska M, Patel R, Lichtinger M, et al. (2012) GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood 120: 314–322. doi: 10.1182/blood-2011-10-386094. pmid:22668850
[11]  Lie ALM, Marinopoulou E, Li Y, Patel R, Stefanska M, et al. (2014) RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence. Blood 124: e11–20. doi: 10.1182/blood-2014-04-572958. pmid:25082880
[12]  Thambyrajah R, Mazan M, Patel R, Moignard V, Stefanska M, et al. (2015) GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nat Cell Biol. doi: 10.1038/ncb3276
[13]  Egawa T, Tillman RE, Naoe Y, Taniuchi I, Littman DR (2007) The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J Exp Med 204: 1945–1957. pmid:17646406 doi: 10.1084/jem.20070133
[14]  Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, et al. (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106: 494–504. pmid:15784726 doi: 10.1182/blood-2004-08-3280
[15]  Ichikawa M, Asai T, Chiba S, Kurokawa M, Ogawa S (2004) Runx1/AML-1 ranks as a master regulator of adult hematopoiesis. Cell Cycle 3: 722–724. pmid:15213471 doi: 10.4161/cc.3.6.951
[16]  Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, et al. (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10: 299–304. pmid:14966519 doi: 10.1038/nm997
[17]  Pencovich N, Jaschek R, Dicken J, Amit A, Lotem J, et al. (2013) Cell-autonomous function of Runx1 transcriptionally regulates mouse megakaryocytic maturation. PLoS One 8: e64248. doi: 10.1371/journal.pone.0064248. pmid:23717578
[18]  Jacob B, Osato M, Yamashita N, Wang CQ, Taniuchi I, et al. (2010) Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood 115: 1610–1620. doi: 10.1182/blood-2009-07-232249. pmid:20008790
[19]  Cai X, Gaudet JJ, Mangan JK, Chen MJ, De Obaldia ME, et al. (2011) Runx1 loss minimally impacts long-term hematopoietic stem cells. PLoS One 6: e28430. doi: 10.1371/journal.pone.0028430. pmid:22145044
[20]  Naoe T, Kiyoi H (2013) Gene mutations of acute myeloid leukemia in the genome era. Int J Hematol 97: 165–174. doi: 10.1007/s12185-013-1257-4. pmid:23359299
[21]  Ben-Ami O, Friedman D, Leshkowitz D, Goldenberg D, Orlovsky K, et al. (2013) Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep 4: 1131–1143. doi: 10.1016/j.celrep.2013.08.020. pmid:24055056
[22]  Goyama S, Schibler J, Cunningham L, Zhang Y, Rao Y, et al. (2013) Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest 123: 3876–3888. doi: 10.1172/JCI68557. pmid:23979164
[23]  Baek D, Davis C, Ewing B, Gordon D, Green P (2007) Characterization and predictive discovery of evolutionarily conserved mammalian alternative promoters. Genome Res 17: 145–155. pmid:17210929 doi: 10.1101/gr.5872707
[24]  Levanon D, Groner Y (2004) Structure and regulated expression of mammalian RUNX genes. Oncogene 23: 4211–4219. pmid:15156175 doi: 10.1038/sj.onc.1207670
[25]  Rennert J, Coffman JA, Mushegian AR, Robertson AJ (2003) The evolution of Runx genes I. A comparative study of sequences from phylogenetically diverse model organisms. BMC Evol Biol 3: 4. pmid:12659662
[26]  Fujita Y, Nishimura M, Taniwaki M, Abe T, Okuda T (2001) Identification of an alternatively spliced form of the mouse AML1/RUNX1 gene transcript AML1c and its expression in early hematopoietic development. Biochem Biophys Res Commun 281: 1248–1255. pmid:11243869 doi: 10.1006/bbrc.2001.4513
[27]  Miyoshi H, Ohira M, Shimizu K, Mitani K, Hirai H, et al. (1995) Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res 23: 2762–2769. pmid:7651838 doi: 10.1093/nar/23.14.2762
[28]  Bee T, Liddiard K, Swiers G, Bickley SR, Vink CS, et al. (2009) Alternative Runx1 promoter usage in mouse developmental hematopoiesis. Blood Cells Mol Dis 43: 35–42. doi: 10.1016/j.bcmd.2009.03.011. pmid:19464215
[29]  Sroczynska P, Lancrin C, Kouskoff V, Lacaud G (2009) The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood 114: 5279–5289. doi: 10.1182/blood-2009-05-222307. pmid:19858498
[30]  van Riel B, Pakozdi T, Brouwer R, Monteiro R, Tuladhar K, et al. (2012) A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells. Mol Cell Biol 32: 3814–3822. doi: 10.1128/MCB.05938-11. pmid:22801375
[31]  Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, et al. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121. pmid:15989959 doi: 10.1016/j.cell.2005.05.026
[32]  Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, et al. (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121: 295–306. pmid:15851035 doi: 10.1016/j.cell.2005.02.013
[33]  Dore LC, Crispino JD (2011) Transcription factor networks in erythroid cell and megakaryocyte development. Blood 118: 231–239. doi: 10.1182/blood-2011-04-285981. pmid:21622645
[34]  Swiers G, Patient R, Loose M (2006) Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol 294: 525–540. pmid:16626682 doi: 10.1016/j.ydbio.2006.02.051
[35]  Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87: 2162–2170. pmid:8630375
[36]  Yu M, Cantor AB (2012) Megakaryopoiesis and thrombopoiesis: an update on cytokines and lineage surface markers. Methods Mol Biol 788: 291–303. doi: 10.1007/978-1-61779-307-3_20. pmid:22130715
[37]  Fox NE, Kaushansky K (2005) Engagement of integrin alpha4beta1 enhances thrombopoietin-induced megakaryopoiesis. Exp Hematol 33: 94–99. pmid:15661402 doi: 10.1016/j.exphem.2004.10.002
[38]  Foudi A, Kramer DJ, Qin J, Ye D, Behlich AS, et al. (2014) Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation. J Exp Med 211: 909–927. doi: 10.1084/jem.20131065. pmid:24711581
[39]  Gutierrez L, Tsukamoto S, Suzuki M, Yamamoto-Mukai H, Yamamoto M, et al. (2008) Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood 111: 4375–4385. doi: 10.1182/blood-2007-09-115121. pmid:18258797
[40]  Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, et al. (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349: 257–260. pmid:1987478 doi: 10.1038/349257a0
[41]  Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA (1999) Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 93: 2867–2875. pmid:10216081
[42]  Hayashi K, Natsume W, Watanabe T, Abe N, Iwai N, et al. (2000) Diminution of the AML1 transcription factor function causes differential effects on the fates of CD4 and CD8 single-positive T cells. J Immunol 165: 6816–6824. pmid:11120804 doi: 10.4049/jimmunol.165.12.6816
[43]  Sun W, Downing JR (2004) Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSCs while simultaneously inducing an increase in more mature progenitors. Blood 104: 3565–3572. pmid:15297309 doi: 10.1182/blood-2003-12-4349
[44]  Kuvardina ON, Herglotz J, Kolodziej S, Kohrs N, Herkt S, et al. (2015) RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood 125: 3570–3579. doi: 10.1182/blood-2014-11-610519. pmid:25911237
[45]  Trombly DJ, Whitfield TW, Padmanabhan S, Gordon JA, Lian JB, et al. (2015) Genome-wide co-occupancy of AML1-ETO and N-CoR defines the t(8;21) AML signature in leukemic cells. BMC Genomics 16: 309. doi: 10.1186/s12864-015-1445-0. pmid:25928846
[46]  Miao YQ, Chen ZX, He J, Cen JN, Bao XJ, et al. (2007) [Expression of AML1/ETO9a isoform in acute myeloid leukemia-M2 subtype]. Zhonghua Xue Ye Xue Za Zhi 28: 27–29. pmid:17649722
[47]  Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, et al. (2006) A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 12: 945–949. pmid:16892037 doi: 10.1038/nm1443
[48]  Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, et al. (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19: 138–152. doi: 10.1016/j.ccr.2010.12.012. pmid:21251617
[49]  Cabezas-Wallscheid N, Eichwald V, de Graaf J, Lower M, Lehr HA, et al. (2013) Instruction of haematopoietic lineage choices, evolution of transcriptional landscapes and cancer stem cell hierarchies derived from an AML1-ETO mouse model. EMBO Mol Med 5: 1804–1820. doi: 10.1002/emmm.201302661. pmid:24124051
[50]  Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193–197. pmid:10724173 doi: 10.1038/35004599
[51]  Pronk CJ, Rossi DJ, Mansson R, Attema JL, Norddahl GL, et al. (2007) Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1: 428–442. doi: 10.1016/j.stem.2007.07.005. pmid:18371379
[52]  Levantini E, Lee S, Radomska HS, Hetherington CJ, Alberich-Jorda M, et al. (2011) RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO J 30: 4059–4070. doi: 10.1038/emboj.2011.285. pmid:21873977
[53]  Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74. doi: 10.1038/nature11247. pmid:22955616
[54]  Mouse EC, Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B, et al. (2012) An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 13: 418. doi: 10.1186/gb-2012-13-8-418. pmid:22889292
[55]  Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32: W273–279. pmid:15215394 doi: 10.1093/nar/gkh458
[56]  Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM (2002) rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res 12: 832–839. pmid:11997350 doi: 10.1101/gr.225502
[57]  Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The human genome browser at UCSC. Genome Res 12: 996–1006. pmid:12045153 doi: 10.1101/gr.229102
[58]  Rosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, et al. (2013) ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 41: D56–63. doi: 10.1093/nar/gks1172. pmid:23193274
[59]  Pina C, Fugazza C, Tipping AJ, Brown J, Soneji S, et al. (2012) Inferring rules of lineage commitment in haematopoiesis. Nat Cell Biol 14: 287–294. doi: 10.1038/ncb2442. pmid:22344032
[60]  Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, et al. (2013) Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502: 232–236. doi: 10.1038/nature12495. pmid:23934107
[61]  Shin JY, Hu W, Naramura M, Park CY (2014) High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med 211: 217–231. doi: 10.1084/jem.20131128. pmid:24446491
[62]  Huang H, Cantor AB (2009) Common features of megakaryocytes and hematopoietic stem cells: what's the connection? J Cell Biochem 107: 857–864. doi: 10.1002/jcb.22184. pmid:19492306
[63]  Nakorn TN, Miyamoto T, Weissman IL (2003) Characterization of mouse clonogenic megakaryocyte progenitors. Proc Natl Acad Sci U S A 100: 205–210. pmid:12490656 doi: 10.1073/pnas.262655099
[64]  Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241: 58–62. pmid:2898810 doi: 10.1126/science.2898810
[65]  Murone M, Carpenter DA, de Sauvage FJ (1998) Hematopoietic deficiencies in c-mpl and TPO knockout mice. Stem Cells 16: 1–6. doi: 10.1002/stem.160001
[66]  Robin C, Ottersbach K, Boisset JC, Oziemlak A, Dzierzak E (2011) CD41 is developmentally regulated and differentially expressed on mouse hematopoietic stem cells. Blood 117: 5088–5091. doi: 10.1182/blood-2011-01-329516. pmid:21415271
[67]  Mukai K, BenBarak MJ, Tachibana M, Nishida K, Karasuyama H, et al. (2012) Critical role of P1-Runx1 in mouse basophil development. Blood 120: 76–85. doi: 10.1182/blood-2011-12-399113. pmid:22611151
[68]  Ptasinska A, Assi SA, Martinez-Soria N, Imperato MR, Piper J, et al. (2014) Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep 8: 1974–1988. doi: 10.1016/j.celrep.2014.08.024. pmid:25242324
[69]  Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109: 29–37. pmid:11955444 doi: 10.1016/s0092-8674(02)00680-3
[70]  Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, et al. (2006) Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc 1: 2979–2987. pmid:17406558 doi: 10.1038/nprot.2006.447
[71]  Sroczynska P, Lancrin C, Pearson S, Kouskoff V, Lacaud G (2009) In vitro differentiation of mouse embryonic stem cells as a model of early hematopoietic development. Methods Mol Biol 538: 317–334. doi: 10.1007/978-1-59745-418-6_16. pmid:19277585
[72]  Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210. pmid:11752295 doi: 10.1093/nar/30.1.207

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133