[1] | Flores-Perez U, Jarvis P (2013) Molecular chaperone involvement in chloroplast protein import. Biochim Biophys Acta 1833: 332–340. doi: 10.1016/j.bbamcr.2012.03.019. pmid:22521451
|
[2] | Trosch R, Muhlhaus T, Schroda M, Willmund F (2015) ATP-dependent molecular chaperones in plastids—More complex than expected. Biochim Biophys Acta doi: 10.1016/j.bbabio.2015.01.002 [Epub ahead of print].
|
[3] | van Wijk KJ (2015) Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. Annu Rev Plant Biol 66: 75–111. doi: 10.1146/annurev-arplant-043014-115547. pmid:25580835
|
[4] | Kato Y, Sakamoto W (2010) New insights into the types and function of proteases in plastids. Int Rev Cell Mol Biol 280: 185–218. doi: 10.1016/S1937-6448(10)80004-8. pmid:20797683
|
[5] | Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130: 1079–1089. pmid:12427975 doi: 10.1104/pp.007138
|
[6] | Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44: 357–429. pmid:16289312 doi: 10.1016/j.plipres.2005.09.003
|
[7] | Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, et al. (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2: 1154–1180. doi: 10.1093/mp/ssp088. pmid:19969518
|
[8] | Guevara-Garcia A, San Roman C, Arroyo A, Cortes ME, Gutierrez-Nava ML, et al. (2005) Characterization of the Arabidopsis clb6 Mutant Illustrates the Importance of Posttranscriptional Regulation of the Methyl-D-Erythritol 4-Phosphate Pathway. Plant Cell 17: 628–643. pmid:15659625 doi: 10.1105/tpc.104.028860
|
[9] | Laule O, Furholz A, Chang HS, Zhu T, Wang X, et al. (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 100: 6866–6871. pmid:12748386 doi: 10.1073/pnas.1031755100
|
[10] | Rodríguez-Concepción M, Boronat A (2015) Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Plant Biol 25: 17–22. doi: 10.1016/j.pbi.2015.04.001. pmid:25909859
|
[11] | Hemmerlin A (2013) Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis. Plant Sci 203–204: 41–54. doi: 10.1016/j.plantsci.2012.12.008. pmid:23415327
|
[12] | Banerjee A, Sharkey TD (2014) Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Nat Prod Rep 31: 1043–1055. doi: 10.1039/c3np70124g. pmid:24921065
|
[13] | Wright LP, Rohwer JM, Ghirardo A, Hammerbacher A, Ortiz-Alcaide M, et al. (2014) Deoxyxylulose 5-Phosphate Synthase Controls Flux through the Methylerythritol 4-Phosphate Pathway in Arabidopsis. Plant Physiol 165: 1488–1504. pmid:24987018 doi: 10.1104/pp.114.245191
|
[14] | Ghirardo A, Wright LP, Bi Z, Rosenkranz M, Pulido P, et al. (2014) Metabolic flux analysis of plastidic isoprenoid biosynthesis in poplar leaves emitting and nonemitting isoprene. Plant Physiol 165: 37–51. doi: 10.1104/pp.114.236018. pmid:24590857
|
[15] | Banerjee A, Wu Y, Banerjee R, Li Y, Yan H, et al. (2013) Feedback inhibition of deoxy-D-xylulose-5-phosphate synthase regulates the methylerythritol 4-phosphate pathway. J Biol Chem 288: 16926–16936. doi: 10.1074/jbc.M113.464636. pmid:23612965
|
[16] | Rodriguez-Villalon A, Gas E, Rodriguez-Concepcion M (2009) Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J 60: 424–435. doi: 10.1111/j.1365-313X.2009.03966.x. pmid:19594711
|
[17] | Han M, Heppel SC, Su T, Bogs J, Zu Y, et al. (2013) Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus. PLoS One 8: e62467. doi: 10.1371/journal.pone.0062467. pmid:23650515
|
[18] | Pokhilko A, Bou-Torrent J, Pulido P, Rodriguez-Concepcion M, Ebenhoh O (2015) Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis. New Phytol 206: 1075–1085. doi: 10.1111/nph.13258. pmid:25598499
|
[19] | Pulido P, Toledo-Ortiz G, Phillips MA, Wright LP, Rodriguez-Concepcion M (2013) Arabidopsis J-Protein J20 Delivers the First Enzyme of the Plastidial Isoprenoid Pathway to Protein Quality Control. Plant Cell 25: 4183–4194. doi: 10.1105/tpc.113.113001. pmid:24104567
|
[20] | Flores-Pérez U, Sauret-Güeto S, Gas E, Jarvis P, Rodríguez-Concepción M (2008) A Mutant Impaired in the Production of Plastome-Encoded Proteins Uncovers a Mechanism for the Homeostasis of Isoprenoid Biosynthetic Enzymes in Arabidopsis Plastids. Plant Cell 20: 1303–1315. doi: 10.1105/tpc.108.058768. pmid:18469163
|
[21] | Kim J, Rudella A, Ramirez Rodriguez V, Zybailov B, Olinares PD, et al. (2009) Subunits of the plastid ClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis. Plant Cell 21: 1669–1692. doi: 10.1105/tpc.108.063784. pmid:19525416
|
[22] | Zybailov B, Friso G, Kim J, Rudella A, Rodriguez VR, et al. (2009) Large scale comparative proteomics of a chloroplast Clp protease mutant reveals folding stress, altered protein homeostasis, and feedback regulation of metabolism. Mol Cell Proteomics 8: 1789–1810. doi: 10.1074/mcp.M900104-MCP200. pmid:19423572
|
[23] | Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ (2006) Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in Arabidopsis. Plant Cell 18: 1704–1721. pmid:16766689 doi: 10.1105/tpc.106.042861
|
[24] | Kim J, Olinares PD, Oh SH, Ghisaura S, Poliakov A, et al. (2013) Modified Clp protease complex in the ClpP3 null mutant and consequences for chloroplast development and function in Arabidopsis. Plant Physiol 162: 157–179. doi: 10.1104/pp.113.215699. pmid:23548781
|
[25] | Rigas S, Daras G, Tsitsekian D, Hatzopoulos P (2012) The multifaceted role of Lon proteolysis in seedling establishment and maintenance of plant organelle function: living from protein destruction. Physiol Plant 145: 215–223. doi: 10.1111/j.1399-3054.2011.01537.x. pmid:22023720
|
[26] | Ostersetzer O, Kato Y, Adam Z, Sakamoto W (2007) Multiple intracellular locations of Lon protease in Arabidopsis: evidence for the localization of AtLon4 to chloroplasts. Plant Cell Physiol 48: 881–885. pmid:17478548 doi: 10.1093/pcp/pcm052
|
[27] | Schuhmann H, Adamska I (2012) Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiol Plant 145: 224–234. doi: 10.1111/j.1399-3054.2011.01533.x. pmid:22008015
|
[28] | Haussuhl K, Andersson B, Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. Embo J 20: 713–722. pmid:11179216 doi: 10.1093/emboj/20.4.713
|
[29] | Sun X, Peng L, Guo J, Chi W, Ma J, et al. (2007) Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell 19: 1347–1361. pmid:17449806 doi: 10.1105/tpc.106.049510
|
[30] | Wagner R, Aigner H, Funk C (2012) FtsH proteases located in the plant chloroplast. Physiol Plant 145: 203–214. doi: 10.1111/j.1399-3054.2011.01548.x. pmid:22121866
|
[31] | Sakamoto W, Zaltsman A, Adam Z, Takahashi Y (2003) Coordinated regulation and complex formation of yellow variegated1 and yellow variegated2, chloroplastic FtsH metalloproteases involved in the repair cycle of photosystem II in Arabidopsis thylakoid membranes. Plant Cell 15: 2843–2855. pmid:14630971 doi: 10.1105/tpc.017319
|
[32] | Yu F, Park S, Rodermel SR (2004) The Arabidopsis FtsH metalloprotease gene family: interchangeability of subunits in chloroplast oligomeric complexes. Plant J 37: 864–876. pmid:14996218 doi: 10.1111/j.1365-313x.2003.02014.x
|
[33] | Rodrigues RA, Silva-Filho MC, Cline K (2011) FtsH2 and FtsH5: two homologous subunits use different integration mechanisms leading to the same thylakoid multimeric complex. Plant J 65: 600–609. doi: 10.1111/j.1365-313X.2010.04448.x. pmid:21214651
|
[34] | Koussevitzky S, Stanne TM, Peto CA, Giap T, Sjogren LL, et al. (2007) An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol 63: 85–96. pmid:17009084 doi: 10.1007/s11103-006-9074-2
|
[35] | Kirstein J, Moliere N, Dougan DA, Turgay K (2009) Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol 7: 589–599. doi: 10.1038/nrmicro2185. pmid:19609260
|
[36] | Levchenko I, Seidel M, Sauer RT, Baker TA (2000) A specificity-enhancing factor for the ClpXP degradation machine. Science 289: 2354–2356. pmid:11009422 doi: 10.1126/science.289.5488.2354
|
[37] | Dougan DA, Reid BG, Horwich AL, Bukau B (2002) ClpS, a substrate modulator of the ClpAP machine. Mol Cell 9: 673–683. pmid:11931773 doi: 10.1016/s1097-2765(02)00485-9
|
[38] | Nishimura K, van Wijk KJ (2014) Organization, function and substrates of the essential Clp protease system in plastids. Biochim Biophys Acta doi: 10.1016/j.bbabio.2014.11.012 [Epub ahead of print].
|
[39] | Clarke AK (2012) The chloroplast ATP-dependent Clp protease in vascular plants—new dimensions and future challenges. Physiol Plant 145: 235–244. doi: 10.1111/j.1399-3054.2011.01541.x. pmid:22085372
|
[40] | Nishimura K, Asakura Y, Friso G, Kim J, Oh SH, et al. (2013) ClpS1 is a conserved substrate selector for the chloroplast Clp protease system in Arabidopsis. Plant Cell 25: 2276–2301. doi: 10.1105/tpc.113.112557. pmid:23898032
|
[41] | Nishimura K, Apitz J, Friso G, Kim J, Ponnala L, et al. (2015) Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery. Plant Cell 27:2677–2691. doi: 10.1105/tpc.15.00574. pmid:26419670
|
[42] | Sjogren LL, Tanabe N, Lymperopoulos P, Khan NZ, Rodermel SR, et al. (2014) Quantitative analysis of the chloroplast molecular chaperone ClpC/Hsp93 in Arabidopsis reveals new insights into its localization, interaction with the Clp proteolytic core, and functional importance. J Biol Chem 289: 11318–11330. doi: 10.1074/jbc.M113.534552. pmid:24599948
|
[43] | Ninnis RL, Spall SK, Talbo GH, Truscott KN, Dougan DA (2009) Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. Embo J 28: 1732–1744. doi: 10.1038/emboj.2009.134. pmid:19440203
|
[44] | Singh A, Grover A (2010) Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine. Plant Mol Biol 74: 395–404. doi: 10.1007/s11103-010-9682-8. pmid:20811767
|
[45] | Kim YI, Levchenko I, Fraczkowska K, Woodruff RV, Sauer RT, et al. (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8: 230–233. pmid:11224567
|
[46] | Doyle SM, Hoskins JR, Wickner S (2007) Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proc Natl Acad Sci U S A 104: 11138–11144. pmid:17545305 doi: 10.1073/pnas.0703980104
|
[47] | Zolkiewski M (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem 274: 28083–28086. pmid:10497158 doi: 10.1074/jbc.274.40.28083
|
[48] | Haslberger T, Weibezahn J, Zahn R, Lee S, Tsai FT, et al. (2007) M domains couple the ClpB threading motor with the DnaK chaperone activity. Mol Cell 25: 247–260. pmid:17244532 doi: 10.1016/j.molcel.2006.11.008
|
[49] | Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11: 579–592. doi: 10.1038/nrm2941. pmid:20651708
|
[50] | Miot M, Reidy M, Doyle SM, Hoskins JR, Johnston DM, et al. (2011) Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proc Natl Acad Sci U S A 108: 6915–6920. doi: 10.1073/pnas.1102828108. pmid:21474779
|
[51] | Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD, et al. (2009) Heat shock protein cognate 70–4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21: 3984–4001. doi: 10.1105/tpc.109.071548. pmid:20028838
|
[52] | Hayes SA, Dice JF (1996) Roles of molecular chaperones in protein degradation. J Cell Biol 132: 255–258. pmid:8636205 doi: 10.1083/jcb.132.3.255
|
[53] | Nordhues A, Miller SM, Muhlhaus T, Schroda M (2010) New insights into the roles of molecular chaperones in Chlamydomonas and Volvox. Int Rev Cell Mol Biol 285: 75–113. doi: 10.1016/B978-0-12-381047-2.00002-5. pmid:21035098
|
[54] | Su PH, Li HM (2010) Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22: 1516–1531. doi: 10.1105/tpc.109.071415. pmid:20484004
|
[55] | Shi LX, Theg SM (2010) A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22: 205–220. doi: 10.1105/tpc.109.071464. pmid:20061551
|
[56] | Flores-Pérez ú, Bédard J, Tanabe N, Lymperopoulos P, Clarke AK, Jarvis P (2015) Functional analysis of the Hsp93/ClpC chaperone at the chloroplast envelope. Plant Physiol pii: pp.01538.2015. doi: 10.1104/pp.15.01538
|
[57] | Inoue H, Li M, Schnell DJ (2013) An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proc Natl Acad Sci U S A 110: 3173–3178. doi: 10.1073/pnas.1219229110. pmid:23382192
|
[58] | Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146: 1231–1241. doi: 10.1104/pp.107.114496. pmid:18192441
|
[59] | Matsue Y, Mizuno H, Tomita T, Asami T, Nishiyama M, et al. (2010) The herbicide ketoclomazone inhibits 1-deoxy-D-xylulose 5-phosphate synthase in the 2-C-methyl-D-erythritol 4-phosphate pathway and shows antibacterial activity against Haemophilus influenzae. J Antibiot (Tokyo) 63: 583–588. doi: 10.1038/ja.2010.100
|
[60] | Perello C, Rodriguez-Concepcion M, Pulido P (2014) Quantification of plant resistance to isoprenoid biosynthesis inhibitors. Methods Mol Biol 1153: 273–283. doi: 10.1007/978-1-4939-0606-2_20. pmid:24777805
|
[61] | Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94: 73–82. pmid:9674429 doi: 10.1016/s0092-8674(00)81223-4
|
[62] | Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A 96: 13732–13737. pmid:10570141 doi: 10.1073/pnas.96.24.13732
|
[63] | Seyffer F, Kummer E, Oguchi Y, Winkler J, Kumar M, et al. (2012) Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces. Nat Struct Mol Biol 19: 1347–1355. doi: 10.1038/nsmb.2442. pmid:23160352
|
[64] | Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE (2013) Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339: 1080–1083. doi: 10.1126/science.1233066. pmid:23393091
|
[65] | Stanne TM, Sjogren LL, Koussevitzky S, Clarke AK (2009) Identification of new protein substrates for the chloroplast ATP-dependent Clp protease supports its constitutive role in Arabidopsis. Biochem J 417: 257–268. doi: 10.1042/BJ20081146. pmid:18754756
|
[66] | Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, et al. (2007) The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 49: 115–127. pmid:17144892 doi: 10.1111/j.1365-313x.2006.02940.x
|
[67] | Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, et al. (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3: e1994. doi: 10.1371/journal.pone.0001994. pmid:18431481
|
[68] | Myouga F, Motohashi R, Kuromori T, Nagata N, Shinozaki K (2006) An Arabidopsis chloroplast-targeted Hsp101 homologue, APG6, has an essential role in chloroplast development as well as heat-stress response. Plant J 48: 249–260. pmid:16995899 doi: 10.1111/j.1365-313x.2006.02873.x
|
[69] | Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, et al. (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161: 1783–1794. doi: 10.1104/pp.112.210773. pmid:23447525
|
[70] | Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK (2002) Characterization of Chloroplast Clp proteins in Arabidopsis: Localization, tissue specificity and stress responses. Physiol Plant 114: 92–101. pmid:11982939 doi: 10.1034/j.1399-3054.2002.1140113.x
|
[71] | Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3: 100–105. pmid:11146634
|
[72] | Wright LP, Phillips MA (2014) Measuring the activity of 1-deoxy-D-xylulose 5-phosphate synthase, the first enzyme in the MEP pathway, in plant extracts. Methods Mol Biol 1153: 9–20. doi: 10.1007/978-1-4939-0606-2_2. pmid:24777787
|
[73] | Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43: W306–313. doi: 10.1093/nar/gkv359. pmid:25883144
|
[74] | Bordoli L, Schwede T (2012) Automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal. Methods Mol Biol 857: 107–136. doi: 10.1007/978-1-61779-588-6_5. pmid:22323219
|