Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an expansion of CUG repeats in the 3' UTR of the DMPK gene. The CUG repeats form aggregates of mutant mRNA, which cause misregulation and/or sequestration of RNA-binding proteins, causing aberrant alternative splicing in cells. Previously, we showed that the multi-functional RNA-binding protein Staufen1 (Stau1) was increased in skeletal muscle of DM1 mouse models and patients. We also showed that Stau1 rescues the alternative splicing profile of pre-mRNAs, e.g. the INSR and CLC1, known to be aberrantly spliced in DM1. In order to explore further the potential of Stau1 as a therapeutic target for DM1, we first investigated the mechanism by which Stau1 regulates pre-mRNA alternative splicing. We report here that Stau1 regulates the alternative splicing of exon 11 of the human INSR via binding to Alu elements located in intron 10. Additionally, using a high-throughput RT-PCR screen, we have identified numerous Stau1-regulated alternative splicing events in both WT and DM1 myoblasts. A number of these aberrant ASEs in DM1, including INSR exon 11, are rescued by overexpression of Stau1. However, we find other ASEs in DM1 cells, where overexpression of Stau1 shifts the splicing patterns away from WT conditions. Moreover, we uncovered that Stau1-regulated ASEs harbour Alu elements in intronic regions flanking the alternative exon more than non-Stau1 targets. Taken together, these data highlight the broad impact of Stau1 as a splicing regulator and suggest that Stau1 may act as a disease modifier in DM1.
References
[1]
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nature genetics. 2008;40(12):1413–5. doi: 10.1038/ng.259. pmid:18978789
[2]
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6. doi: 10.1038/nature07509. pmid:18978772
[3]
Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science. 2012;338(6114):1593–9. doi: 10.1126/science.1228186. pmid:23258891
[4]
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8. doi: 10.1038/nature11233. pmid:22955620
[5]
Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S, Lee LJ, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338(6114):1587–93. doi: 10.1126/science.1230612. pmid:23258890
[6]
Nilsen TW, Graveley BR. Expansion of the eukaryotic proteome by alternative splicing. Nature. 2010;463(7280):457–63. doi: 10.1038/nature08909. pmid:20110989
[7]
Cote J, Dupuis S, Jiang Z, Wu JY. Caspase-2 pre-mRNA alternative splicing: Identification of an intronic element containing a decoy 3' acceptor site. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(3):938–43. pmid:11158574 doi: 10.1073/pnas.98.3.938
Raker VA, Mironov AA, Gelfand MS, Pervouchine DD. Modulation of alternative splicing by long-range RNA structures in Drosophila. Nucleic acids research. 2009;37(14):4533–44. doi: 10.1093/nar/gkp407. pmid:19465384
[10]
Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Mu?oz MJ. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nature reviews Molecular cell biology. 2013;14(3):153–65. doi: 10.1038/nrm3525. pmid:23385723
[11]
Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3'untranslated region of the gene. science. 1992;255(5049):1253–5. pmid:1546325 doi: 10.1126/science.1546325
[12]
Sen S, Talukdar I, Webster NJ. SRp20 and CUG-BP1 modulate insulin receptor exon 11 alternative splicing. Molecular and cellular biology. 2009;29(3):871–80. doi: 10.1128/MCB.01709-08. pmid:19047369
[13]
Du H, Cline MS, Osborne RJ, Tuttle DL, Clark TA, Donohue JP, et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nature structural & molecular biology. 2010;17(2):187–93. doi: 10.1038/nsmb.1720
Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nature Reviews Genetics. 2005;6(10):743–55. pmid:16205714 doi: 10.1038/nrg1691
[16]
Ranum LP, Cooper TA. RNA-mediated neuromuscular disorders. Annu Rev Neurosci. 2006;29:259–77. pmid:16776586 doi: 10.1146/annurev.neuro.29.051605.113014
[17]
Dhaenens CM, Tran H, Frandemiche ML, Carpentier C, Schraen-Maschke S, Sistiaga A, et al. Mis-splicing of Tau exon 10 in myotonic dystrophy type 1 is reproduced by overexpression of CELF2 but not by MBNL1 silencing. Biochimica et biophysica acta. 2011;1812(7):732–42. doi: 10.1016/j.bbadis.2011.03.010. pmid:21439371
[18]
Klinck R, Fourrier A, Thibault P, Toutant J, Durand M, Lapointe E, et al. RBFOX1 Cooperates with MBNL1 to Control Splicing in Muscle, Including Events Altered in Myotonic Dystrophy Type 1. PloS one. 2014;9(9):e107324. doi: 10.1371/journal.pone.0107324. pmid:25211016
[19]
Fugier C, Klein AF, Hammer C, Vassilopoulos S, Ivarsson Y, Toussaint A, et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nature medicine. 2011;17(6):720–5. doi: 10.1038/nm.2374. pmid:21623381
[20]
Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nature genetics. 2001;29(1):40–7. pmid:11528389
[21]
Wang ET, Ward AJ, Cherone J, Wang TT, Giudice J, Treacy D, et al. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome research. 2015:gr. 184390.114. doi: 10.1101/gr.184390.114
[22]
Ephrussi A, Dickinson LK, Lehmann R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell. 1991;66(1):37–50. pmid:2070417 doi: 10.1016/0092-8674(91)90137-n
[23]
St Johnston D, Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992;68(2):201–19. pmid:1733499 doi: 10.1016/0092-8674(92)90466-p
[24]
Wickham L, Ducha?ne T, Luo M, Nabi IR, DesGroseillers L. Mammalian staufen is a double-stranded-RNA-and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Molecular and cellular biology. 1999;19(3):2220–30. pmid:10022909 doi: 10.1128/mcb.19.3.2220
[25]
Micklem DR, Adams J, Grünert S, St Johnston D. Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. The EMBO journal. 2000;19(6):1366–77. pmid:10716936 doi: 10.1093/emboj/19.6.1366
[26]
Bélanger G, Stocksley MA, Vandromme M, Schaeffer L, Furic L, DesGroseillers L, et al. Localization of the RNA‐binding proteins Staufen1 and Staufen2 at the mammalian neuromuscular junction. Journal of neurochemistry. 2003;86(3):669–77. pmid:12859680 doi: 10.1046/j.1471-4159.2003.01883.x
[27]
Martel C, Dugré-Brisson S, Boulay K, Breton B, Lapointe G, Armando S, et al. Multimerization of Staufen1 in live cells. RNA. 2010;16(3):585–97. doi: 10.1261/rna.1664210. pmid:20075165
[28]
Kim Y K FL, Parisien M, Major F, DesGroseillers , Maquat L. Staufen1 regulates diverse classes of mammalian transcripts. The EMBO Journal. 2007(26):2670–2681. doi: 10.1038/sj.emboj.7601712
[29]
Thomas MG, Tosar LJM, Desbats MA, Leishman CC, Boccaccio GL. Mammalian Staufen 1 is recruited to stress granules and impairs their assembly. Journal of cell science. 2009;122(4):563–73. doi: 10.1242/jcs.038208
[30]
Martel C, Macchi P, Furic L, Kiebler M, Desgroseillers L. Staufen1 is imported into the nucleolus via a bipartite nuclear localization signal and several modulatory determinants. Biochem J. 2006(393):245–54. doi: 10.1042/bj20050694
[31]
Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C, D/'Ambrogio A, et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature. 2015;519(7544):491–4. doi: 10.1038/nature14280. pmid:25799984
[32]
Ravel-Chapuis A, Belanger G, Yadava RS, Mahadevan MS, DesGroseillers L, Cote J, et al. The RNA-binding protein Staufen1 is increased in DM1 skeletal muscle and promotes alternative pre-mRNA splicing. The Journal of cell biology. 2012;196(6):699–712. doi: 10.1083/jcb.201108113. pmid:22431750
[33]
Ducha?ne TF, Hemraj I, Furic L, Deitinghoff A, Kiebler MA, DesGroseillers L. Staufen2 isoforms localize to the somatodendritic domain of neurons and interact with different organelles. Journal of cell science. 2002;115(16):3285–95.
[34]
Furic L, Maher-Laporte M, DesGroseillers L. A genome-wide approach identifies distinct but overlapping subsets of cellular mRNAs associated with Staufen1-and Staufen2-containing ribonucleoprotein complexes. Rna. 2008;14(2):324–35. pmid:18094122 doi: 10.1261/rna.720308
[35]
Laver JD, Li X, Ancevicius K, Westwood JT, Smibert CA, Morris QD, et al. Genome-wide analysis of Staufen-associated mRNAs identifies secondary structures that confer target specificity. Nucleic acids research. 2013;41(20):9438–60. doi: 10.1093/nar/gkt702. pmid:23945942
[36]
de Lucas S, Oliveros JC, Chagoyen M, Ortín J. Functional signature for the recognition of specific target mRNAs by human Staufen1 protein. Nucleic acids research. 2014;42(7):4516–26. doi: 10.1093/nar/gku073. pmid:24470147
Mykowska A, Sobczak K, Wojciechowska M, Kozlowski P, Krzyzosiak WJ. CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic acids research. 2011;39(20):8938–51. doi: 10.1093/nar/gkr608. pmid:21795378
[39]
Dansithong W, Paul S, Comai L, Reddy S. MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1. Journal of Biological Chemistry. 2005;280(7):5773–80. pmid:15546872 doi: 10.1074/jbc.m410781200
[40]
Sen S, Talukdar I, Webster NJ. SRp20 and CUG-BP1 modulate insulin receptor exon 11 alternative splicing. Molecular and cellular biology. 2009;29(3):871–80. doi: 10.1128/MCB.01709-08. pmid:19047369
[41]
Sen S, Talukdar I, Liu Y, Tam J, Reddy S, Webster NJ. Muscleblind-like 1 (Mbnl1) promotes insulin receptor exon 11 inclusion via binding to a downstream evolutionarily conserved intronic enhancer. The Journal of biological chemistry. 2010;285(33):25426–37. doi: 10.1074/jbc.M109.095224. pmid:20519504
[42]
Philips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science. 1998;280(5364):737–41. pmid:9563950 doi: 10.1126/science.280.5364.737
[43]
Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, et al. A muscleblind knockout model for myotonic dystrophy. Science. 2003;302(5652):1978–80. pmid:14671308 doi: 10.1126/science.1088583
[44]
Kim D-H, Langlois M-A, Lee K-B, Riggs AD, Puymirat J, Rossi JJ. HnRNP H inhibits nuclear export of mRNA containing expanded CUG repeats and a distal branch point sequence. Nucleic acids research. 2005;33(12):3866–74. pmid:16027111 doi: 10.1093/nar/gki698
[45]
Elbarbary RA, Li W, Tian B, Maquat LE. STAU1 binding 3' UTR IRAlus complements nuclear retention to protect cells from PKR-mediated translational shutdown. Genes & development. 2013;27(13):1495–510. doi: 10.1101/gad.220962.113
[46]
Kelley DR, Hendrickson DG, Tenen D, Rinn JL. Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol. 2014;9(15):14. doi: 10.1186/s13059-014-0537-5
[47]
Kosaki A, Nelson J, Webster NJ. Identification of intron and exon sequences involved in alternative splicing of insulin receptor pre-mRNA. Journal of Biological Chemistry. 1998;273(17):10331–7. pmid:9553088 doi: 10.1074/jbc.273.17.10331
[48]
Kapitonov V, Jurkal J. The age of Alu subfamilies. Journal of molecular evolution. 1996;42(1):59–65. pmid:8576965 doi: 10.1007/bf00163212
[49]
Deininger P. Alu elements: know the SINEs. Genome Biol. 2011;12(12):236. doi: 10.1186/gb-2011-12-12-236. pmid:22204421
[50]
Wang Y, Ma M, Xiao X, Wang Z. Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules. Nature structural & molecular biology. 2012;19(10):1044–52. doi: 10.1038/nsmb.2377
[51]
Lev-Maor G, Ram O, Kim E, Sela N, Goren A, Levanon EY, et al. Intronic Alus influence alternative splicing. PLoS genetics. 2008;4(9):e1000204. doi: 10.1371/journal.pgen.1000204. pmid:18818740
[52]
Pastor T, Talotti G, Lewandowska MA, Pagani F. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM. Nucleic acids research. 2009;37(21):7258–67. doi: 10.1093/nar/gkp778. pmid:19773425
[53]
Zarnack K, K?nig J, Tajnik M, Martincorena I, Eustermann S, Stévant I, et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell. 2013;152(3):453–66. doi: 10.1016/j.cell.2012.12.023. pmid:23374342
[54]
Mahadevan MS. Myotonic dystrophy: is a narrow focus obscuring the rest of the field? Current opinion in neurology. 2012;25(5):609. doi: 10.1097/WCO.0b013e328357b0d9. pmid:22892953
[55]
Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3 [prime] UTRs via Alu elements. Nature. 2011;470(7333):284–8. doi: 10.1038/nature09701. pmid:21307942
[56]
Timchenko NA, Patel R, Iakova P, Cai ZJ, Quan L, Timchenko LT. Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. The Journal of biological chemistry. 2004;279(13):13129–39. pmid:14722059 doi: 10.1074/jbc.m312923200
[57]
Ho TH, Bundman D, Armstrong DL, Cooper TA. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Human molecular genetics. 2005;14(11):1539–47. pmid:15843400 doi: 10.1093/hmg/ddi162
[58]
Suenaga K, Lee KY, Nakamori M, Tatsumi Y, Takahashi MP, Fujimura H, et al. Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain. PLoS One. 2012;7(3):e33218. doi: 10.1371/journal.pone.0033218. pmid:22427994
[59]
Llamusi B, Bargiela A, Fernandez-Costa JM, Garcia-Lopez A, Klima R, Feiguin F, et al. Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model. Disease models & mechanisms. 2013;6(1):184–96. doi: 10.1242/dmm.009563
[60]
Huin V, Vasseur F, Schraen-Maschke S, Dhaenens CM, Devos P, Dupont K, et al. MBNL1 gene variants as modifiers of disease severity in myotonic dystrophy type 1. Journal of neurology. 2013;260(4):998–1003. doi: 10.1007/s00415-012-6740-y. pmid:23161457
[61]
Jones K, Wei C, Schoser B, Meola G, Timchenko N, Timchenko L. Reduction of toxic RNAs in myotonic dystrophies type 1 and type 2 by the RNA helicase p68/DDX5. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(26):8041–5. doi: 10.1073/pnas.1422273112. pmid:26080402
[62]
Laurent FX, Sureau A, Klein AF, Trouslard F, Gasnier E, Furling D, et al. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic acids research. 2012;40(7):3159–71. doi: 10.1093/nar/gkr1228. pmid:22156369
[63]
Ravel-Chapuis A, Crawford TE, Blais-Crepeau ML, Belanger G, Richer CT, Jasmin BJ. The RNA-binding protein Staufen1 impairs myogenic differentiation via a c-myc-dependent mechanism. Mol Biol Cell. 2014;25(23):3765–78. doi: 10.1091/mbc.E14-04-0895. pmid:25208565