全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2016 

A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies

DOI: 10.1371/journal.pgen.1005679

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

References

[1]  Skladal D, Halliday J, Thorburn DR (2003) Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 126: 1905–1912. pmid:12805096 doi: 10.1093/brain/awg170
[2]  DiMauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37: 222–232. pmid:16019721 doi: 10.1080/07853890510007368
[3]  Kirby DM, Thorburn DR (2008) Approaches to finding the molecular basis of mitochondrial oxidative phosphorylation disorders. Twin Res Hum Genet 11: 395–411. doi: 10.1375/twin.11.4.395. pmid:18637740
[4]  Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12: 685–698. doi: 10.1038/nrc3365. pmid:23001348
[5]  Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491: 374–383. doi: 10.1038/nature11707. pmid:23151580
[6]  Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, et al. (2012) Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing. Sci Transl Med 4: 118ra10–118ra10. doi: 10.1126/scitranslmed.3003310. pmid:22277967
[7]  Lieber DS, Calvo SE, Shanahan K, Slate NG, Liu S, Hershman SG, et al. (2013) Targeted exome sequencing of suspected mitochondrial disorders. Neurology 80: 1762–1770. doi: 10.1212/WNL.0b013e3182918c40. pmid:23596069
[8]  Ohtake A, Murayama K, Mori M, Harashima H, Yamazaki T, Tamaru S, et al. (2014) Diagnosis and molecular basis of mitochondrial respiratory chain disorders: Exome sequencing for disease gene identification. Biochim Biophys Acta 1840: 1355–1359. doi: 10.1016/j.bbagen.2014.01.025. pmid:24462578
[9]  Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, et al. (2007) An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 35: D823–8. pmid:17178747 doi: 10.1093/nar/gkl927
[10]  Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN (2013) The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet doi: 10.1007/s00439-013-1358-4
[11]  Brea-Calvo G, Haack TB, Karall D, Ohtake A, Invernizzi F, Carrozzo R, et al. (2015) COQ4 Mutations Cause a Broad Spectrum of Mitochondrial Disorders Associated with CoQ10 Deficiency. Am J Hum Genet 96: 309–317. doi: 10.1016/j.ajhg.2014.12.023. pmid:25658047
[12]  Haack TB, Jackson CB, Murayama K, Kremer LS, Schaller A, Kotzaeridou U, et al. (2015) Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement. Ann Clin Transl Neurol 2: 492–509. doi: 10.1002/acn3.189. pmid:26000322
[13]  Smits P, Antonicka H, van Hasselt PM, Weraarpachai W, Haller W, Schreurs M, et al. (2011) Mutation in subdomain G' of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle. Eur J Hum Genet 19: 275–279. doi: 10.1038/ejhg.2010.208. pmid:21119709
[14]  Kopajtich R, Nicholls TJ, Rorbach J, Metodiev MD, Freisinger P, Mandel H, et al. (2014) Mutations in GTPBP3 Cause a Mitochondrial Translation Defect Associated with Hypertrophic Cardiomyopathy, Lactic Acidosis, and Encephalopathy. Am J Hum Genet 95: 708–720. doi: 10.1016/j.ajhg.2014.10.017. pmid:25434004
[15]  El-Hattab AW, Li F-Y, Schmitt E, Zhang S, Craigen WJ, Wong L-JC (2010) MPV17-associated hepatocerebral mitochondrial DNA depletion syndrome: New patients and novel mutations. Mol Genet Metab 99: 300–308. doi: 10.1016/j.ymgme.2009.10.003. pmid:20074988
[16]  Mobley BC, Enns GM, Wong L-J, Vogel H (2009) A novel homozygous SCO2 mutation, p.G193S, causing fatal infantile cardioencephalomyopathy. Clin Neuropathol 28: 143–149. pmid:19353847 doi: 10.5414/npp28143
[17]  Nascimento Osorio AEN, Navarro-Sastre ANS, Colomer JC, Paredes CP, Gutierrez AG, Ortez CO, et al. (2009) G.P.3.07 Novel mutation in SUCLA2 gene: Encephalomyopathy, dystonia and deafness associated with mild methylmalonic aciduria and mtDNA depletions. Neuromuscul Disord 19: 563–563. doi: 10.1016/j.nmd.2009.06.065
[18]  Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong S-E, et al. (2008) A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology. Cell 134: 112–123. doi: 10.1016/j.cell.2008.06.016. pmid:18614015
[19]  van Rahden VA, Fernandez-Vizarra E, Alawi M, Brand K, Fellmann F, Horn D, et al. (2015) REPOR TMutations in NDUFB11, Encoding a Complex I Component of the Mitochondrial Respiratory Chain, Cause Microphthalmia with Linear Skin Defects Syndrome. Am J Hum Genet 96: 640–650. doi: 10.1016/j.ajhg.2015.02.002. pmid:25772934
[20]  Leuzzi V, Di Sabato ML, Zollino M, Montanaro ML, Seri S (2004) Early-onset encephalopathy and cortical myoclonus in a boy with MECP2 gene mutation. Neurology 63: 1968–1970. pmid:15557528 doi: 10.1212/01.wnl.0000144350.97844.94
[21]  Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R, et al. (2003) Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 111: 209–216. pmid:12531876 doi: 10.1172/jci200316336
[22]  Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, et al. (2014) Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proc Natl Acad Sci USA 111: 7284–7289. doi: 10.1073/pnas.1401657111. pmid:24799711
[23]  Nagao A, Suzuki T, Katoh T, Sakaguchi Y, Suzuki T (2009) Biogenesis of glutaminyl-mt tRNAGln in human mitochondria. Proc Natl Acad Sci USA 106: 16209–16214. doi: 10.1073/pnas.0907602106. pmid:19805282
[24]  Thienpont B, Zhang L, Postma AV, Breckpot J, Tranchevent L-C, Van Loo P, et al. (2010) AR TICLEHaploinsufficiency of TAB2 Causes Congenital Heart Defects in Humans. Am J Hum Genet 86: 839–849. doi: 10.1016/j.ajhg.2010.04.011. pmid:20493459
[25]  Miller C, Saada A, Shaul N, Shabtai N, Ben-Shalom E, Shaag A, et al. (2004) Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol 56: 734–738. pmid:15505824 doi: 10.1002/ana.20282
[26]  Smits P, Saada A, Wortmann SB, Heister AJ, Brink M, Pfundt R, et al. (2011) Mutation in mitochondrial ribosomal protein MRPS22 leads to Cornelia de Lange-like phenotype, brain abnormalities and hypertrophic cardiomyopathy. Eur J Hum Genet 19: 394–399. doi: 10.1038/ejhg.2010.214. pmid:21189481
[27]  Mancuso DJ, Sims HF, Han X, Jenkins CM, Guan SP, Yang K, et al. (2007) Genetic Ablation of Calcium-independent Phospholipase A 2γ Leads to Alterations in Mitochondrial Lipid Metabolism and Function Resulting in a Deficient Mitochondrial Bioenergetic Phenotype. J Biol Chem 282: 34611–34622. pmid:17923475 doi: 10.1074/jbc.m707795200
[28]  Mancuso DJ, Kotzbauer P, Wozniak DF, Sims HF, Jenkins CM, Guan S, et al. (2009) Genetic Ablation of Calcium-independent Phospholipase A2 Leads to Alterations in Hippocampal Cardiolipin Content and Molecular Species Distribution, Mitochondrial Degeneration, Autophagy, and Cognitive Dysfunction. J Biol Chem 284: 35632–35644. doi: 10.1074/jbc.M109.055194. pmid:19840936
[29]  Saunders CJ, Moon SH, Liu X, Thiffault I, Coffman K, LePichon J-B, et al. (2015) Loss of Function Variants in Human PNPLA8Encoding Calcium-Independent Phospholipase A 2γ Recapitulate the Mitochondriopathy of the Homologous Null Mouse. Hum Mutat 36: 301–306. doi: 10.1002/humu.22743. pmid:25512002
[30]  Beck G, Sugiura Y, Shinzawa K, Kato S, Setou M, Tsujimoto Y, et al. (2011) Neuroaxonal Dystrophy in Calcium-Independent Phospholipase A2 Deficiency Results from Insufficient Remodeling and Degeneration of Mitochondrial and Presynaptic Membranes. J Neurosci 31: 11411–11420. doi: 10.1523/JNEUROSCI.0345-11.2011. pmid:21813701
[31]  Kirby DM, Crawford M, Cleary MA, Dahl HHM, Dennett X, Thorburn DR (1999) Respiratory chain complex I deficiency An underdiagnosed energy generation disorder. Neurology 52: 1255–1255. pmid:10214753 doi: 10.1212/wnl.52.6.1255
[32]  Hui J, Kirby DM, Thorburn DR, Boneh A (2006) Decreased activities of mitochondrial respiratory chain complexes in non-mitochondrial respiratory chain diseases. Dev Med Child Neurol 48: 132–136. pmid:16417669 doi: 10.1017/s0012162206000284
[33]  Heilstedt HA, Shahbazian MD, Lee B (2002) Infantile hypotonia as a presentation of rett syndrome. Am J Med Genet 111: 238–242. pmid:12210319 doi: 10.1002/ajmg.10633
[34]  Kriaucionis S, Paterson A, Curtis J, Guy J, MacLeod N, Bird A (2006) Gene Expression Analysis Exposes Mitochondrial Abnormalities in a Mouse Model of Rett Syndrome. Mol Cell Biol 26: 5033–5042. pmid:16782889 doi: 10.1128/mcb.01665-05
[35]  Jia Y, Akerman S, Huang X (2004) Myofibril MgATPase Activities and Energy Metabolism in Cardiomyopathic Mice with Diastolic Dysfunction. J Biomed Sci. 11: 450–456. pmid:15153779 doi: 10.1159/000077894
[36]  Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, et al. (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42: 851–858. doi: 10.1038/ng.659. pmid:20818383
[37]  Vasta V, Merritt JL II, Saneto RP, Hahn SH (2012) Next-generation sequencing for mitochondrial diseases: A wide diagnostic spectrum. Pediatr Int 54: 585–601. doi: 10.1111/j.1442-200X.2012.03644.x. pmid:22494076
[38]  DaRe JT, Vasta V, Penn J, Tran N-TB, Hahn SH (2013) Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity. BMC Med Genet 14: 1–1. doi: 10.1186/1471-2350-14-118
[39]  Haack TB, Haberberger B, Frisch EM, Wieland T, Iuso A, Gorza M, et al. (2012) Molecular diagnosis in mitochondrial complex I deficiency using exome sequencing. J Med Genet 49: 277–283. doi: 10.1136/jmedgenet-2012-100846. pmid:22499348
[40]  Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, et al. (2014) Use of Whole-Exome Sequencing to Determine the Genetic Basis of Multiple Mitochondrial Respiratory Chain Complex Deficiencies. JAMA 312: 68. doi: 10.1001/jama.2014.7184. pmid:25058219
[41]  Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ (2015) Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis 38: 437–443. doi: 10.1007/s10545-015-9823-y. pmid:25735936
[42]  Kirby DM, Thorburn DR, Turnbull DM, Taylor RW (2007) Biochemical assays of respiratory chain complex activity. Methods Cell Biol 80: 93–119. pmid:17445690 doi: 10.1016/s0091-679x(06)80004-x
[43]  Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR (2002) Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 59: 1406–1411. pmid:12427892 doi: 10.1212/01.wnl.0000033795.17156.00
[44]  Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6: e1000834. doi: 10.1371/journal.pgen.1000834. pmid:20168995
[45]  Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324. pmid:19451168
[46]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352. pmid:19505943
[47]  McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi: 10.1101/gr.107524.110. pmid:20644199
[48]  Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19: 455–477. doi: 10.1089/cmb.2012.0021. pmid:22506599
[49]  Pagnamenta AT, Taanman J-W, Wilson CJ, Anderson NE, Marotta R, Duncan AJ, et al. (2006) Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma. Hum Reprod 21: 2467–2473. pmid:16595552 doi: 10.1093/humrep/del076
[50]  Gohil VM, Nilsson R, Belcher-Timme CA, Luo B, Root DE, Mootha VK (2010) Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. J Biol Chem 285: 13742–13747. doi: 10.1074/jbc.M109.098400. pmid:20220140
[51]  Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 132: 365–386. pmid:10547847 doi: 10.1385/1-59259-192-2:365
[52]  Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. doi: 10.1093/bioinformatics/btu170. pmid:24695404
[53]  Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38: e164–e164. doi: 10.1093/nar/gkq603. pmid:20601685
[54]  Liu X, Jian X, Boerwinkle E (2011) dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat 32: 894–899. doi: 10.1002/humu.21517. pmid:21520341
[55]  Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. (2011) Integrative genomics viewer. Nat Biotechnol. 29: 24–26. doi: 10.1038/nbt.1754. pmid:21221095
[56]  Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14: 178–192. doi: 10.1093/bib/bbs017. pmid:22517427
[57]  Nagasaki M, Yasuda J, Katsuoka F, Nariai N, Kojima K, Kawai Y, et al. (2015) Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun. 6: 8018. doi: 10.1038/ncomms9018. pmid:26292667
[58]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404. pmid:17846036
[59]  Schwarze SR, Weindruch R, Aiken JM (1998) Oxidative stress and aging reduce COX I RNA and cytochrome oxidase activity in Drosophila. Free Radic Biol Med 25: 740–747. pmid:9801075 doi: 10.1016/s0891-5849(98)00153-1
[60]  Cho J, Hur JH, Graniel J, Benzer S, Walker DW (2012) Expression of Yeast NDI1 Rescues a Drosophila Complex I Assembly Defect. PLoS ONE 7: e50644–10. doi: 10.1371/journal.pone.0050644. pmid:23226344
[61]  Tokuzawa Y, Yagi K, Yamashita Y, Nakachi Y, Nikaido I, Bono H, et al. (2010) Id4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation. Barsh GS, editor. PLoS Genet. 6: e1001019. doi: 10.1371/journal.pgen.1001019. pmid:20628571
[62]  Takeuchi K-I, Nakano Y, Kato U, Kaneda M, Aizu M, Awano W, et al. (2009) Changes in temperature preferences and energy homeostasis in dystroglycan mutants. Science 323: 1740–1743. doi: 10.1126/science.1165712. pmid:19325118
[63]  Sato-Miyata Y, Muramatsu K, Funakoshi M, Tsuda M, Aigaki T (2014) Overexpression of dilp2 causes nutrient-dependent semi-lethality in Drosophila. Front Physiol. 5:147. doi: 10.3389/fphys.2014.00147. pmid:24795642
[64]  Pan H, Mostoslavsky G, Eruslanov E, Kotton DN, Kramnik I (2008) Dual-promoter lentiviral system allows inducible expression of noxious proteins in macrophages. J Immunol Methods 329: 31–44. pmid:17967462 doi: 10.1016/j.jim.2007.09.009
[65]  Ito T, Yokoyama S (2010) Two enzymes bound to one transfer RNA assume alternative conformations for consecutive reactions. Nature 467: 612–616. doi: 10.1038/nature09411. pmid:20882017
[66]  Kimura S, Miyauchi K, Ikeuchi Y, Thiaville PC, Crecy-Lagard VD, Suzuki T (2014) Discovery of the β-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs. Nucleic Acids Res 42: 9350–9365. doi: 10.1093/nar/gku618. pmid:25063302
[67]  Sampson JR, Uhlenbeck OC (1988) Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc Natl Acad Sci USA 85: 1033–1037. pmid:3277187 doi: 10.1073/pnas.85.4.1033
[68]  Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SFA, et al. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17: 1665–1674. pmid:17921354 doi: 10.1101/gr.6861907

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133