The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases.
References
[1]
Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical genetics. J Hum Genet. 2014;59: 5–15. doi: 10.1038/jhg.2013.114. pmid:24196381
[2]
Frebourg T. The challenge for the next generation of medical geneticists. Hum Mutat. 2014;35: 909–911. doi: 10.1002/humu.22592. pmid:24838402
[3]
Wu J, Li Y, Jiang R. Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLoS Genet. 2014;10: e1004237. doi: 10.1371/journal.pgen.1004237. pmid:24651380
[4]
Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, et al. A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform. 2014;15: 256–278. doi: 10.1093/bib/bbs086. pmid:23341494
[5]
Eggington JM, Bowles KR, Moyes K, Manley S, Esterling L, Sizemore S, et al. A comprehensive laboratory-based program for classification of variants of uncertain significance in hereditary cancer genes. Clin Genet. 2014;86: 229–237. doi: 10.1111/cge.12315. pmid:24304220
[6]
Kichaev G, Yang W-Y, Lindstrom S, Hormozdiari F, Eskin E, Price AL, et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 2014;10: e1004722. doi: 10.1371/journal.pgen.1004722. pmid:25357204
[7]
González-Pérez A, López-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet. 2011;88: 440–449. doi: 10.1016/j.ajhg.2011.03.004. pmid:21457909
[8]
Cline MS, Karchin R. Using bioinformatics to predict the functional impact of SNVs. Bioinforma Oxf Engl. 2011;27: 441–448. doi: 10.1093/bioinformatics/btq695
[9]
Frousios K, Iliopoulos CS, Schlitt T, Simpson MA. Predicting the functional consequences of non-synonymous DNA sequence variants—evaluation of bioinformatics tools and development of a consensus strategy. Genomics. 2013;102: 223–228. doi: 10.1016/j.ygeno.2013.06.005. pmid:23831115
[10]
Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3: 285–298. pmid:11967553 doi: 10.1038/nrg775
[11]
Sterne-Weiler T, Howard J, Mort M, Cooper DN, Sanford JR. Loss of exon identity is a common mechanism of human inherited disease. Genome Res. 2011;21: 1563–1571. doi: 10.1101/gr.118638.110. pmid:21750108
[12]
Spurdle AB, Couch FJ, Hogervorst FBL, Radice P, Sinilnikova OM. Prediction and Assessment of Splicing Alterations: Implications for clinical testing. Hum Mutat. 2008;29: 1304–1313. doi: 10.1002/humu.20901. pmid:18951448
[13]
Tournier I, Vezain M, Martins A, Charbonnier F, Baert-Desurmont S, Olschwang S, et al. A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects. Hum Mutat. 2008;29: 1412–1424. doi: 10.1002/humu.20796. pmid:18561205
[14]
Théry JC, Krieger S, Gaildrat P, Révillion F, Buisine M-P, Killian A, et al. Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes. Eur J Hum Genet EJHG. 2011;19: 1052–1058. doi: 10.1038/ejhg.2011.100. pmid:21673748
[15]
Houdayer C, Caux-Moncoutier V, Krieger S, Barrois M, Bonnet F, Bourdon V, et al. Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum Mutat. 2012;33: 1228–1238. doi: 10.1002/humu.22101. pmid:22505045
[16]
Ke S, Shang S, Kalachikov SM, Morozova I, Yu L, Russo JJ, et al. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res. 2011;21: 1360–1374. doi: 10.1101/gr.119628.110. pmid:21659425
[17]
Di Giacomo D, Gaildrat P, Abuli A, Abdat J, Frébourg T, Tosi M, et al. Functional analysis of a large set of BRCA2 exon 7 variants highlights the predictive value of hexamer scores in detecting alterations of exonic splicing regulatory elements. Hum Mutat. 2013;34: 1547–1557. doi: 10.1002/humu.22428. pmid:23983145
[18]
Erkelenz S, Theiss S, Otte M, Widera M, Peter JO, Schaal H. Genomic HEXploring allows landscaping of novel potential splicing regulatory elements. Nucleic Acids Res. 2014;42: 10681–10697. doi: 10.1093/nar/gku736. pmid:25147205
[19]
Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, et al. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2014; doi: 10.1126/science.1254806
[20]
Baralle D, Lucassen A, Buratti E. Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep. 2009;10: 810–816. doi: 10.1038/embor.2009.170. pmid:19648957
[21]
Lim KH, Ferraris L, Filloux ME, Raphael BJ, Fairbrother WG. Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes. Proc Natl Acad Sci U S A. 2011;108: 11093–11098. doi: 10.1073/pnas.1101135108. pmid:21685335
[22]
Grandval P, Fabre AJ, Gaildrat P, Baert-Desurmont S, Buisine M-P, Ferrari A, et al. UMD-MLH1/MSH2/MSH6 databases: description and analysis of genetic variations in French Lynch syndrome families. Database J Biol Databases Curation. 2013;2013: bat036. doi: 10.1093/database/bat036
[23]
Thompson BA, Spurdle AB, Plazzer J-P, Greenblatt MS, Akagi K, Al-Mulla F, et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet. 2014;46: 107–115. doi: 10.1038/ng.2854. pmid:24362816
[24]
Lastella P, Surdo NC, Resta N, Guanti G, Stella A. In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects. BMC Genomics. 2006;7: 243. pmid:16995940
[25]
Charbonnier F, Martin C, Scotte M, Sibert L, Moreau V, Frebourg T. Alternative splicing of MLH1 messenger RNA in human normal cells. Cancer Res. 1995;55: 1839–1841. pmid:7728749
[26]
Genuardi M, Viel A, Bonora D, Capozzi E, Bellacosa A, Leonardi F, et al. Characterization of MLH1 and MSH2 alternative splicing and its relevance to molecular testing of colorectal cancer susceptibility. Hum Genet. 1998;102: 15–20. pmid:9490293 doi: 10.1007/s004390050648
[27]
Thompson BA, Martins A, Spurdle AB. A review of mismatch repair gene transcripts: issues for interpretation of mRNA splicing assays. Clin Genet. 2014. doi: 10.1111/cge.12450
[28]
Vezain M, Saugier-Veber P, Goina E, Touraine R, Manel V, Toutain A, et al. A rare SMN2 variant in a previously unrecognized composite splicing regulatory element induces exon 7 inclusion and reduces the clinical severity of spinal muscular atrophy. Hum Mutat. 2010;31: E1110–1125. doi: 10.1002/humu.21173. pmid:19953646
[29]
Raponi M, Kralovicova J, Copson E, Divina P, Eccles D, Johnson P, et al. Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in BRCA1 exon 6. Hum Mutat. 2011;32: 436–444. doi: 10.1002/humu.21458. pmid:21309043
[30]
Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31: 3568–3571. pmid:12824367 doi: 10.1093/nar/gkg616
[31]
Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet. 2006;15: 2490–2508. pmid:16825284 doi: 10.1093/hmg/ddl171
[32]
Desmet F-O, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37: e67. doi: 10.1093/nar/gkp215. pmid:19339519
[33]
Pagani F, Stuani C, Tzetis M, Kanavakis E, Efthymiadou A, Doudounakis S, et al. New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet. 2003;12: 1111–1120. pmid:12719375 doi: 10.1093/hmg/ddg131
[34]
Pagani F, Raponi M, Baralle FE. Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc Natl Acad Sci U S A. 2005;102: 6368–6372. pmid:15840711 doi: 10.1073/pnas.0502288102
[35]
Baralle M, Skoko N, Knezevich A, De Conti L, Motti D, Bhuvanagiri M, et al. NF1 mRNA biogenesis: effect of the genomic milieu in splicing regulation of the NF1 exon 37 region. FEBS Lett. 2006;580: 4449–4456. pmid:16870183 doi: 10.1016/j.febslet.2006.07.018
[36]
Auclair J, Busine MP, Navarro C, Ruano E, Montmain G, Desseigne F, et al. Systematic mRNA analysis for the effect of MLH1 and MSH2 missense and silent mutations on aberrant splicing. Hum Mutat. 2006;27: 145–154. pmid:16395668 doi: 10.1002/humu.20280
[37]
Gaildrat P, Krieger S, Di Giacomo D, Abdat J, Révillion F, Caputo S, et al. Multiple sequence variants of BRCA2 exon 7 alter splicing regulation. J Med Genet. 2012;49: 609–617. doi: 10.1136/jmedgenet-2012-100965. pmid:22962691
[38]
Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009;85: 408–413. doi: 10.1016/j.ajhg.2009.08.002. pmid:19716110
[39]
Liu F, Gong C-X. Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener. 2008;3: 8. doi: 10.1186/1750-1326-3-8. pmid:18616804
[40]
Plotz G, Raedle J, Brieger A, Trojan J, Zeuzem S. N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res. 2003;31: 3217–3226. pmid:12799449 doi: 10.1093/nar/gkg420
[41]
Buckler AJ, Chang DD, Graw SL, Brook JD, Haber DA, Sharp PA, et al. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc Natl Acad Sci U S A. 1991;88: 4005–4009. pmid:1850845 doi: 10.1073/pnas.88.9.4005
[42]
Gaildrat P, Killian A, Martins A, Tournier I, Frébourg T, Tosi M. Use of splicing reporter minigene assay to evaluate the effect on splicing of unclassified genetic variants. Methods Mol Biol Clifton NJ. 2010;653: 249–257. doi: 10.1007/978-1-60761-759-4_15
[43]
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77: 51–59. pmid:2744487 doi: 10.1016/0378-1119(89)90358-2