[1] | Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harbor perspectives in biology 3. doi: 10.1101/cshperspect.a004911
|
[2] | Kelley LC, Lohmer LL, Hagedorn EJ, Sherwood DR (2014) Traversing the basement membrane in vivo: A diversity of strategies. The Journal of cell biology 204: 291–302. doi: 10.1083/jcb.201311112. pmid:24493586
|
[3] | Madsen CD, Sahai E (2010) Cancer dissemination—lessons from leukocytes. Dev Cell 19: 13–26. doi: 10.1016/j.devcel.2010.06.013. pmid:20643347
|
[4] | Rowe RG, Weiss SJ (2008) Breaching the basement membrane: who, when and how? Trends Cell Biol 18: 560–574. doi: 10.1016/j.tcb.2008.08.007. pmid:18848450
|
[5] | Barsky SH, Siegal GP, Jannotta F, Liotta LA (1983) Loss of basement membrane components by invasive tumors but not by their benign counterparts. Laboratory investigation; a journal of technical methods and pathology 49: 140–147. pmid:6348406
|
[6] | Hagedorn EJ, Sherwood DR (2011) Cell invasion through basement membrane: the anchor cell breaches the barrier. Curr Opin Cell Biol 23: 589–596. doi: 10.1016/j.ceb.2011.05.002. pmid:21632231
|
[7] | Chen WT (1989) Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J Exp Zool 251: 167–185. pmid:2549171 doi: 10.1002/jez.1402510206
|
[8] | Murphy DA, Courtneidge SA (2011) The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function. Nature reviews Molecular cell biology 12: 413–426. doi: 10.1038/nrm3141. pmid:21697900
|
[9] | Saltel F, Daubon T, Juin A, Ganuza IE, Veillat V, et al. (2011) Invadosomes: intriguing structures with promise. Eur J Cell Biol 90: 100–107. doi: 10.1016/j.ejcb.2010.05.011. pmid:20605056
|
[10] | Linder S, Wiesner C, Himmel M (2011) Degrading devices: invadosomes in proteolytic cell invasion. Annual review of cell and developmental biology 27: 185–211. doi: 10.1146/annurev-cellbio-092910-154216. pmid:21801014
|
[11] | Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, et al. (2011) Twist1-induced invadopodia formation promotes tumor metastasis. Cancer cell 19: 372–386. doi: 10.1016/j.ccr.2011.01.036. pmid:21397860
|
[12] | Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, et al. (2012) N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. Journal of cell science 125: 724–734. doi: 10.1242/jcs.092726. pmid:22389406
|
[13] | Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA, et al. (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell reports 8: 1558–1570. doi: 10.1016/j.celrep.2014.07.050. pmid:25176655
|
[14] | Hoshino D, Branch KM, Weaver AM (2013) Signaling inputs to invadopodia and podosomes. Journal of cell science 126: 2979–2989. doi: 10.1242/jcs.079475. pmid:23843616
|
[15] | Artym VV, Matsumoto K, Mueller SC, Yamada KM (2011) Dynamic membrane remodeling at invadopodia differentiates invadopodia from podosomes. European journal of cell biology 90: 172–180. doi: 10.1016/j.ejcb.2010.06.006. pmid:20656375
|
[16] | Poincloux R, Lizarraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 122: 3015–3024. doi: 10.1242/jcs.034561. pmid:19692588
|
[17] | Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, et al. (2009) Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer research 69: 8594–8602. doi: 10.1158/0008-5472.CAN-09-2305. pmid:19887621
|
[18] | Beerling E, Ritsma L, Vrisekoop N, Derksen PW, van Rheenen J (2011) Intravital microscopy: new insights into metastasis of tumors. Journal of cell science 124: 299–310. doi: 10.1242/jcs.072728. pmid:21242309
|
[19] | Genot E, Gligorijevic B (2014) Invadosomes in their natural habitat. European journal of cell biology 93: 367–379. doi: 10.1016/j.ejcb.2014.10.002. pmid:25457677
|
[20] | Lohmer LL, Kelley LC, Hagedorn EJ, Sherwood DR (2014) Invadopodia and basement membrane invasion in vivo. Cell adhesion & migration 8. doi: 10.4161/cam.28406
|
[21] | Sherwood DR, Sternberg PW (2003) Anchor cell invasion into the vulval epithelium in C. elegans. Dev Cell 5: 21–31. pmid:12852849 doi: 10.1016/s1534-5807(03)00168-0
|
[22] | Hagedorn EJ, Ziel JW, Morrissey MA, Linden LM, Wang Z, et al. (2013) The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo. The Journal of cell biology 201: 903–913. doi: 10.1083/jcb.201301091. pmid:23751497
|
[23] | Hagedorn EJ, Kelley LC, Naegeli KM, Wang Z, Chi Q, et al. (2014) ADF/cofilin promotes invadopodial membrane recycling during cell invasion in vivo. The Journal of cell biology 204: 1209–1218. doi: 10.1083/jcb.201312098. pmid:24662568
|
[24] | Hagedorn EJ, Yashiro H, Ziel JW, Ihara S, Wang Z, et al. (2009) Integrin acts upstream of netrin signaling to regulate formation of the anchor cell's invasive membrane in C. elegans. Dev Cell 17: 187–198. doi: 10.1016/j.devcel.2009.06.006. pmid:19686680
|
[25] | Ziel JW, Hagedorn EJ, Audhya A, Sherwood DR (2009) UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans. Nat Cell Biol 11: 183–189. doi: 10.1038/ncb1825. pmid:19098902
|
[26] | Rual JF, Ceron J, Koreth J, Hao T, Nicot AS, et al. (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14: 2162–2168. pmid:15489339 doi: 10.1101/gr.2505604
|
[27] | Ihara S, Hagedorn EJ, Morrissey MA, Chi Q, Motegi F, et al. (2011) Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine-vulval attachment in Caenorhabditis elegans. Nat Cell Biol 13: 641–651. doi: 10.1038/ncb2233. pmid:21572423
|
[28] | Matus DQ, Li XY, Durbin S, Agarwal D, Chi Q, et al. (2010) In vivo identification of regulators of cell invasion across basement membranes. Sci Signal 3: ra35. doi: 10.1126/scisignal.2000654. pmid:20442418
|
[29] | Wang Z, Chi Q, Sherwood DR (2014) MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans. Development 141: 1342–1353. doi: 10.1242/dev.102434. pmid:24553288
|
[30] | Wang Z, Linden LM, Naegeli KM, Ziel JW, Chi Q, et al. (2014) UNC-6 (netrin) stabilizes oscillatory clustering of the UNC-40 (DCC) receptor to orient polarity. The Journal of cell biology 206: 619–633. doi: 10.1083/jcb.201405026. pmid:25154398
|
[31] | Di Martino J, Paysan L, Gest C, Lagree V, Juin A, et al. (2014) Cdc42 and Tks5: a minimal and universal molecular signature for functional invadosomes. Cell adhesion & migration 8: 280–292. doi: 10.4161/cam.28833
|
[32] | Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S, et al. (2005) Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol 168: 441–452. pmid:15684033 doi: 10.1083/jcb.200407076
|
[33] | Armenti ST, Lohmer LL, Sherwood DR, Nance J (2014) Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development 141: 4640–4647. doi: 10.1242/dev.115048. pmid:25377555
|
[34] | Neukomm LJ, Zeng S, Frei AP, Huegli PA, Hengartner MO (2014) Small GTPase CDC-42 promotes apoptotic cell corpse clearance in response to PAT-2 and CED-1 in C. elegans. Cell death and differentiation 21: 845–853. doi: 10.1038/cdd.2014.23. pmid:24632947
|
[35] | Beaty BT, Condeelis J (2014) Digging a little deeper: the stages of invadopodium formation and maturation. European journal of cell biology 93: 438–444. doi: 10.1016/j.ejcb.2014.07.003. pmid:25113547
|
[36] | Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. The Journal of cell biology 150: 1299–1310. pmid:10995436 doi: 10.1083/jcb.150.6.1299
|
[37] | Desmarais V, Yamaguchi H, Oser M, Soon L, Mouneimne G, et al. (2009) N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells. Cell motility and the cytoskeleton 66: 303–316. doi: 10.1002/cm.20361. pmid:19373774
|
[38] | Withee J, Galligan B, Hawkins N, Garriga G (2004) Caenorhabditis elegans WASP and Ena/VASP proteins play compensatory roles in morphogenesis and neuronal cell migration. Genetics 167: 1165–1176. pmid:15280232 doi: 10.1534/genetics.103.025676
|
[39] | Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, et al. (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97: 221–231. pmid:10219243 doi: 10.1016/s0092-8674(00)80732-1
|
[40] | Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature reviews Molecular cell biology 9: 690–701. doi: 10.1038/nrm2476. pmid:18719708
|
[41] | Kumfer KT, Cook SJ, Squirrell JM, Eliceiri KW, Peel N, et al. (2010) CGEF-1 and CHIN-1 regulate CDC-42 activity during asymmetric division in the Caenorhabditis elegans embryo. Mol Biol Cell 21: 266–277. doi: 10.1091/mbc.E09-01-0060. pmid:19923324
|
[42] | Gould CM, Courtneidge SA (2014) Regulation of invadopodia by the tumor microenvironment. Cell adhesion & migration 8: 226–235. doi: 10.4161/cam.28346
|
[43] | Pignatelli J, Tumbarello DA, Schmidt RP, Turner CE (2012) Hic-5 promotes invadopodia formation and invasion during TGF-beta-induced epithelial-mesenchymal transition. The Journal of cell biology 197: 421–437. doi: 10.1083/jcb.201108143. pmid:22529104
|
[44] | Seiler C, Davuluri G, Abrams J, Byfield FJ, Janmey PA, et al. (2012) Smooth muscle tension induces invasive remodeling of the zebrafish intestine. PLoS biology 10: e1001386. doi: 10.1371/journal.pbio.1001386. pmid:22973180
|
[45] | Juin A, Di Martino J, Leitinger B, Henriet E, Gary AS, et al. (2014) Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42-Tuba pathway. The Journal of cell biology 207: 517–533. doi: 10.1083/jcb.201404079. pmid:25422375
|
[46] | Artym VV, Swatkoski S, Matsumoto K, Campbell CB, Petrie RJ, et al. (2015) Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. The Journal of cell biology 208: 331–350. doi: 10.1083/jcb.201405099. pmid:25646088
|
[47] | Pfeffer SR (2013) Rab GTPase regulation of membrane identity. Current opinion in cell biology 25: 414–419. doi: 10.1016/j.ceb.2013.04.002. pmid:23639309
|
[48] | Skop AR, Liu H, Yates J 3rd, Meyer BJ, Heald R (2004) Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 305: 61–66. pmid:15166316 doi: 10.1126/science.1097931
|
[49] | Raffaniello R, Fedorova D, Ip D, Rafiq S (2009) Hsp90 Co-localizes with Rab-GDI-1 and regulates agonist-induced amylase release in AR42J cells. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology 24: 369–378. doi: 10.1159/000257429
|
[50] | Pfeffer S, Aivazian D (2004) Targeting Rab GTPases to distinct membrane compartments. Nature reviews Molecular cell biology 5: 886–896. pmid:15520808 doi: 10.1038/nrm1500
|
[51] | Rual JF, Klitgord N, Achaz G (2007) Novel insights into RNAi off-target effects using C. elegans paralogs. BMC genomics 8: 106. pmid:17445269 doi: 10.1186/1471-2164-8-106
|
[52] | Humphries WHt, Szymanski CJ, Payne CK (2011) Endo-lysosomal vesicles positive for Rab7 and LAMP1 are terminal vesicles for the transport of dextran. PloS one 6: e26626. doi: 10.1371/journal.pone.0026626. pmid:22039519
|
[53] | Campbell EM, Fares H (2010) Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC cell biology 11: 40. doi: 10.1186/1471-2121-11-40. pmid:20540742
|
[54] | Sternberg PW (2005) Vulval development. WormBook: 1–28. doi: 10.1895/wormbook.1.6.1
|
[55] | Morrissey MA, Keeley DP, Hagedorn EJ, McClatchey ST, Chi Q, et al. (2014) B-LINK: A Hemicentin, Plakin, and Integrin-Dependent Adhesion System that Links Tissues by Connecting Adjacent Basement Membranes. Developmental cell 31: 319–331. doi: 10.1016/j.devcel.2014.08.024. pmid:25443298
|
[56] | Yamaguchi H (2012) Pathological roles of invadopodia in cancer invasion and metastasis. European journal of cell biology 91: 902–907. doi: 10.1016/j.ejcb.2012.04.005. pmid:22658792
|
[57] | Bergman A, Condeelis JS, Gligorijevic B (2014) Invadopodia in context. Cell adhesion & migration 8: 273–279. doi: 10.4161/cam.28349
|
[58] | Razidlo GL, Schroeder B, Chen J, Billadeau DD, McNiven MA (2014) Vav1 as a central regulator of invadopodia assembly. Current biology: CB 24: 86–93. doi: 10.1016/j.cub.2013.11.013. pmid:24332539
|
[59] | Andersson M, Iwasa Y (1996) Sexual selection. Trends in ecology & evolution 11: 53–58. doi: 10.1016/0169-5347(96)81042-1
|
[60] | Matus DQ, Chang E, Makohon-Moore SC, Hagedorn MA, Chi Q, et al. (2014) Cell division and targeted cell cycle arrest opens and stabilizes basement membrane gaps. Nature communications 5: 4184. doi: 10.1038/ncomms5184. pmid:24924309
|
[61] | Kitano H (2004) Cancer as a robust system: implications for anticancer therapy. Nature reviews Cancer 4: 227–235. pmid:14993904 doi: 10.1038/nrc1300
|
[62] | Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, et al. (2003) Dynamin participates in focal extracellular matrix degradation by invasive cells. Molecular biology of the cell 14: 1074–1084. pmid:12631724 doi: 10.1091/mbc.e02-05-0308
|
[63] | Hoshino D, Koshikawa N, Suzuki T, Quaranta V, Weaver AM, et al. (2012) Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies. PLoS computational biology 8: e1002479. doi: 10.1371/journal.pcbi.1002479. pmid:22511862
|
[64] | Yu X, Zech T, McDonald L, Gonzalez EG, Li A, et al. (2012) N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. The Journal of cell biology 199: 527–544. doi: 10.1083/jcb.201203025. pmid:23091069
|
[65] | Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiological reviews 91: 119–149. doi: 10.1152/physrev.00059.2009. pmid:21248164
|
[66] | Luan P, Balch WE, Emr SD, Burd CG (1999) Molecular dissection of guanine nucleotide dissociation inhibitor function in vivo. Rab-independent binding to membranes and role of Rab recycling factors. J Biol Chem 274: 14806–14817. pmid:10329679 doi: 10.1074/jbc.274.21.14806
|
[67] | Chen Y, Deng Y, Zhang J, Yang L, Xie X, et al. (2009) GDI-1 preferably interacts with Rab10 in insulin-stimulated GLUT4 translocation. The Biochemical journal 422: 229–235. doi: 10.1042/BJ20090624. pmid:19570034
|
[68] | Wang JW, Peng SY, Li JT, Wang Y, Zhang ZP, et al. (2009) Identification of metastasis-associated proteins involved in gallbladder carcinoma metastasis by proteomic analysis and functional exploration of chloride intracellular channel 1. Cancer letters 281: 71–81. doi: 10.1016/j.canlet.2009.02.020. pmid:19299076
|
[69] | Sun ZL, Zhu Y, Wang FQ, Chen R, Peng T, et al. (2007) Serum proteomic-based analysis of pancreatic carcinoma for the identification of potential cancer biomarkers. Biochimica et biophysica acta 1774: 764–771. pmid:17507299 doi: 10.1016/j.bbapap.2007.04.001
|
[70] | Onda M, Emi M, Yoshida A, Miyamoto S, Akaishi J, et al. (2004) Comprehensive gene expression profiling of anaplastic thyroid cancers with cDNA microarray of 25 344 genes. Endocrine-related cancer 11: 843–854. pmid:15613457 doi: 10.1677/erc.1.00818
|
[71] | Kashyap MK, Harsha HC, Renuse S, Pawar H, Sahasrabuddhe NA, et al. (2010) SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer biology & therapy 10: 796–810. doi: 10.4161/cbt.10.8.12914
|
[72] | Bai Z, Ye Y, Liang B, Xu F, Zhang H, et al. (2011) Proteomics-based identification of a group of apoptosis-related proteins and biomarkers in gastric cancer. International journal of oncology 38: 375–383. doi: 10.3892/ijo.2010.873. pmid:21165559
|
[73] | Jenkins NC, Kalra RR, Dubuc A, Sivakumar W, Pedone CA, et al. (2014) Genetic drivers of metastatic dissemination in sonic hedgehog medulloblastoma. Acta neuropathologica communications 2: 85. doi: 10.1186/s40478-014-0085-y. pmid:25059231
|
[74] | Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita JB, Daviet L, et al. (2008) The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. The Journal of cell biology 181: 985–998. doi: 10.1083/jcb.200709076. pmid:18541705
|
[75] | Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94. pmid:4366476
|
[76] | Sherwood DR, Butler JA, Kramer JM, Sternberg PW (2005) FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell 121: 951–962. pmid:15960981 doi: 10.1016/j.cell.2005.03.031
|
[77] | Kirouac M, Sternberg PW (2003) cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of Caenorhabditis elegans and C. briggsae. Dev Biol 257: 85–103. pmid:12710959 doi: 10.1016/s0012-1606(03)00032-0
|
[78] | Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, et al. (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99: 123–132. pmid:10535731 doi: 10.1016/s0092-8674(00)81644-x
|
[79] | Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, et al. (2009) AmiGO: online access to ontology and annotation data. Bioinformatics 25: 288–289. doi: 10.1093/bioinformatics/btn615. pmid:19033274
|
[80] | Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010) Computer control of microscopes using microManager. Curr Protoc Mol Biol Chapter 14: Unit14 20. doi: 10.1002/0471142727.mb1420s92
|