[1] | Svoboda P, Di Cara A (2006) Hairpin RNA: a secondary structure of primary importance. Cell Mol Life Sci 63: 901–908. pmid:16568238 doi: 10.1007/s00018-005-5558-5
|
[2] | Ipsaro JJ, Joshua-Tor L (2015) From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22: 20–28. doi: 10.1038/nsmb.2931. pmid:25565029
|
[3] | Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15: 469–479. doi: 10.1038/nrg3681. pmid:24821474
|
[4] | Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79: 321–349. doi: 10.1146/annurev-biochem-060208-105251. pmid:20192758
|
[5] | Kramer FR, Mills DR (1981) Secondary structure formation during RNA synthesis. Nucleic Acids Res 9: 5109–5124. pmid:6171773 doi: 10.1093/nar/9.19.5109
|
[6] | Lai D, Proctor JR, Meyer IM (2013) On the importance of cotranscriptional RNA structure formation. RNA 19: 1461–1473. doi: 10.1261/rna.037390.112. pmid:24131802
|
[7] | Lubkowska L, Maharjan AS, Komissarova N (2011) RNA folding in transcription elongation complex: implication for transcription termination. J Biol Chem 286: 31576–31585. doi: 10.1074/jbc.M111.249359. pmid:21730066
|
[8] | Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505: 701–705. doi: 10.1038/nature12894. pmid:24336214
|
[9] | Busan S, Weeks KM (2013) Role of context in RNA structure: flanking sequences reconfigure CAG motif folding in huntingtin exon 1 transcripts. Biochemistry 52: 8219–8225. doi: 10.1021/bi401129r. pmid:24199621
|
[10] | de Mezer M, Wojciechowska M, Napierala M, Sobczak K, Krzyzosiak WJ (2011) Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res 39: 3852–3863. doi: 10.1093/nar/gkq1323. pmid:21247881
|
[11] | Jarmoskaite I, Russell R (2014) RNA helicase proteins as chaperones and remodelers. Annu Rev Biochem 83: 697–725. doi: 10.1146/annurev-biochem-060713-035546. pmid:24635478
|
[12] | Lee CG, Chang KA, Kuroda MI, Hurwitz J (1997) The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J 16: 2671–2681. pmid:9184214 doi: 10.1093/emboj/16.10.2671
|
[13] | Reenan RA, Hanrahan CJ, Ganetzky B (2000) The mle(napts) RNA helicase mutation in drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron 25: 139–149. pmid:10707979 doi: 10.1016/s0896-6273(00)80878-8
|
[14] | Belote JM, Lucchesi JC (1980) Control of X chromosome transcription by the maleless gene in Drosophila. Nature 285: 573–575. pmid:7402300 doi: 10.1038/285573a0
|
[15] | Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, et al. (2013) Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell 51: 156–173. doi: 10.1016/j.molcel.2013.07.001. pmid:23870142
|
[16] | Maenner S, Muller M, Frohlich J, Langer D, Becker PB (2013) ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell 51: 174–184. doi: 10.1016/j.molcel.2013.06.011. pmid:23870143
|
[17] | Cugusi S, Kallappagoudar S, Ling H, Lucchesi JC (2015) The Drosophila helicase MLE is implicated in functions distinct from its role in dosage compensation. Mol Cell Proteomics. doi: 10.1074/mcp.m114.040667
|
[18] | Aratani S, Kageyama Y, Nakamura A, Fujita H, Fujii R, et al. (2008) MLE activates transcription via the minimal transactivation domain in Drosophila. Int J Mol Med 21: 469–476. pmid:18360693 doi: 10.3892/ijmm.21.4.469
|
[19] | Kuroda MI, Kernan MJ, Kreber R, Ganetzky B, Baker BS (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66: 935–947. pmid:1653648 doi: 10.1016/0092-8674(91)90439-6
|
[20] | Kotlikova IV, Demakova OV, Semeshin VF, Shloma VV, Boldyreva LV, et al. (2006) The Drosophila dosage compensation complex binds to polytene chromosomes independently of developmental changes in transcription. Genetics 172: 963–974. pmid:16079233 doi: 10.1534/genetics.105.045286
|
[21] | Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, et al. (2008) Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 5: 49–51. pmid:18084299 doi: 10.1038/nmeth1146
|
[22] | Ni JQ, Liu LP, Binari R, Hardy R, Shim HS, et al. (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182: 1089–1100. doi: 10.1534/genetics.109.103630. pmid:19487563
|
[23] | Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, et al. (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8: 405–407. doi: 10.1038/nmeth.1592. pmid:21460824
|
[24] | Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, et al. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448: 151–156. pmid:17625558 doi: 10.1038/nature05954
|
[25] | Robb GB, Rana TM (2007) RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell 26: 523–537. pmid:17531811 doi: 10.1016/j.molcel.2007.04.016
|
[26] | Fu Q, Yuan YA (2013) Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9). Nucleic Acids Res 41: 3457–3470. doi: 10.1093/nar/gkt042. pmid:23361462
|
[27] | Liang XH, Crooke ST (2013) RNA helicase A is not required for RISC activity. Biochim Biophys Acta 1829: 1092–1101. doi: 10.1016/j.bbagrm.2013.07.008. pmid:23895878
|
[28] | Singh AK, Lakhotia SC (2012) The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. J Biosci 37: 659–678. pmid:22922191 doi: 10.1007/s12038-012-9239-x
|
[29] | Hilfiker A, Hilfiker-Kleiner D, Pannuti A, Lucchesi JC (1997) mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J 16: 2054–2060. pmid:9155031 doi: 10.1093/emboj/16.8.2054
|
[30] | Akhtar A, Zink D, Becker PB (2000) Chromodomains are protein-RNA interaction modules. Nature 407: 405–409. pmid:11014199 doi: 10.1038/35030169
|
[31] | Lei EP, Corces VG (2006) RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38: 936–941. pmid:16862159 doi: 10.1038/ng1850
|
[32] | Buszczak M, Spradling AC (2006) The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 20: 977–989. pmid:16598038 doi: 10.1101/gad.1396306
|
[33] | Boeke J, Bag I, Ramaiah MJ, Vetter I, Kremmer E, et al. (2011) The RNA helicase Rm62 cooperates with SU(VAR)3-9 to re-silence active transcription in Drosophila melanogaster. PLoS One 6: e20761. doi: 10.1371/journal.pone.0020761. pmid:21674064
|
[34] | Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16: 2497–2508. pmid:12368261 doi: 10.1101/gad.1022002
|
[35] | Gerbasi VR, Preall JB, Golden DE, Powell DW, Cummins TD, et al. (2011) Blanks, a nuclear siRNA/dsRNA-binding complex component, is required for Drosophila spermiogenesis. Proc Natl Acad Sci U S A 108: 3204–3209. doi: 10.1073/pnas.1009781108. pmid:21300896
|
[36] | Moy RH, Cole BS, Yasunaga A, Gold B, Shankarling G, et al. (2014) Stem-loop recognition by DDX17 facilitates miRNA processing and antiviral defense. Cell 158: 764–777. doi: 10.1016/j.cell.2014.06.023. pmid:25126784
|
[37] | Diaz-Benjumea FJ, Hafen E (1994) The sevenless signalling cassette mediates Drosophila EGF receptor function during epidermal development. Development 120: 569–578. pmid:8162856
|
[38] | Oliver B, Pauli D (1998) Suppression of distinct ovo phenotypes in the Drosophila female germline by maleless- and Sex-lethal. Dev Genet 23: 335–346. pmid:9883585 doi: 10.1002/(sici)1520-6408(1998)23:4<335::aid-dvg8>3.0.co;2-m
|
[39] | Azzam G, Smibert P, Lai EC, Liu JL (2012) Drosophila Argonaute 1 and its miRNA biogenesis partners are required for oocyte formation and germline cell division. Dev Biol 365: 384–394. doi: 10.1016/j.ydbio.2012.03.005. pmid:22445511
|
[40] | Rastelli L, Kuroda MI (1998) An analysis of maleless and histone H4 acetylation in Drosophila melanogaster spermatogenesis. Mech Dev 71: 107–117. pmid:9507080 doi: 10.1016/s0925-4773(98)00009-4
|
[41] | Wen J, Duan H, Bejarano F, Okamura K, Fabian L, et al. (2015) Adaptive regulation of testis gene expression and control of male fertility by the Drosophila harpin RNA pathway. Mol Cell 57: 165–178. doi: 10.1016/j.molcel.2014.11.025. pmid:25544562
|
[42] | Hock J, Weinmann L, Ender C, Rudel S, Kremmer E, et al. (2007) Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep 8: 1052–1060. pmid:17932509 doi: 10.1038/sj.embor.7401088
|
[43] | Castellano L, Stebbing J (2013) Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues. Nucleic Acids Res 41: 3339–3351. doi: 10.1093/nar/gks1474. pmid:23325850
|
[44] | Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, et al. (2008) The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453: 803–806. doi: 10.1038/nature07015. pmid:18463630
|
[45] | Wu D, Lamm AT, Fire AZ (2011) Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nat Struct Mol Biol 18: 1094–1101. doi: 10.1038/nsmb.2129. pmid:21909095
|
[46] | Tonkin LA, Bass BL (2003) Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302: 1725. pmid:14657490 doi: 10.1126/science.1091340
|